IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1102.5665.html
   My bibliography  Save this paper

Risk, VaR, CVaR and their associated Portfolio Optimizations when Asset Returns have a Multivariate Student T Distribution

Author

Listed:
  • William T. Shaw

Abstract

We show how to reduce the problem of computing VaR and CVaR with Student T return distributions to evaluation of analytical functions of the moments. This allows an analysis of the risk properties of systems to be carefully attributed between choices of risk function (e.g. VaR vs CVaR); choice of return distribution (power law tail vs Gaussian) and choice of event frequency, for risk assessment. We exploit this to provide a simple method for portfolio optimization when the asset returns follow a standard multivariate T distribution. This may be used as a semi-analytical verification tool for more general optimizers, and for practical assessment of the impact of fat tails on asset allocation for shorter time horizons.

Suggested Citation

  • William T. Shaw, 2011. "Risk, VaR, CVaR and their associated Portfolio Optimizations when Asset Returns have a Multivariate Student T Distribution," Papers 1102.5665, arXiv.org.
  • Handle: RePEc:arx:papers:1102.5665
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1102.5665
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. William T. Shaw, 2010. "Monte Carlo Portfolio Optimization for General Investor Risk-Return Objectives and Arbitrary Return Distributions: a Solution for Long-only Portfolios," Papers 1008.3718, arXiv.org.
    2. Xavier Gabaix & Parameswaran Gopikrishnan & Vasiliki Plerou & H. Eugene Stanley, 2003. "A theory of power-law distributions in financial market fluctuations," Nature, Nature, vol. 423(6937), pages 267-270, May.
    3. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    4. W. Breymann & D. R. Lüthi & E. Platen, 2009. "Empirical behavior of a world stock index from intra-day to monthly time scales," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 71(4), pages 511-522, October.
    5. Kevin Fergusson & Eckhard Platen, 2006. "On the Distributional Characterization of Daily Log-Returns of a World Stock Index," Applied Mathematical Finance, Taylor & Francis Journals, vol. 13(1), pages 19-38.
    6. Shaw, W.T. & Lee, K.T.A., 2008. "Bivariate Student t distributions with variable marginal degrees of freedom and independence," Journal of Multivariate Analysis, Elsevier, vol. 99(6), pages 1276-1287, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:cte:idrepe:id-16-01 is not listed on IDEAS
    2. Ahmed, Dilan & Soleymani, Fazlollah & Ullah, Malik Zaka & Hasan, Hataw, 2021. "Managing the risk based on entropic value-at-risk under a normal-Rayleigh distribution," Applied Mathematics and Computation, Elsevier, vol. 402(C).
    3. Balbás, Beatriz & Balbás, Raquel, 2016. "VaR as the CVaR sensitivity : applications in risk optimization," IC3JM - Estudios = Working Papers id-16-01, Instituto Mixto Carlos III - Juan March de Ciencias Sociales (IC3JM).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lux, Thomas & Alfarano, Simone, 2016. "Financial power laws: Empirical evidence, models, and mechanisms," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 3-18.
    2. Igor Fedotenkov, 2020. "A Review of More than One Hundred Pareto-Tail Index Estimators," Statistica, Department of Statistics, University of Bologna, vol. 80(3), pages 245-299.
    3. Eisenberg, Larry, 2011. "Destabilizing properties of a VaR or probability-of-ruin constraint when variances may be infinite," Journal of Financial Stability, Elsevier, vol. 7(1), pages 10-18, January.
    4. Philipp Weber & Bernd Rosenow, 2006. "Large stock price changes: volume or liquidity?," Quantitative Finance, Taylor & Francis Journals, vol. 6(1), pages 7-14.
    5. repec:uts:finphd:40 is not listed on IDEAS
    6. Hokky Situngkir & Yohanes Surya, 2004. "Stylized Statistical Facts of Indonesian Financial Data: Empirical Study of Several Stock Indexes in Indonesia," Papers cond-mat/0403465, arXiv.org.
    7. Chirok Han & Jin Seo Cho & Peter C. B. Phillips, 2011. "Infinite Density at the Median and the Typical Shape of Stock Return Distributions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(2), pages 282-294, April.
    8. Gu, Gao-Feng & Xiong, Xiong & Zhang, Yong-Jie & Chen, Wei & Zhang, Wei & Zhou, Wei-Xing, 2016. "Stylized facts of price gaps in limit order books," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 48-58.
    9. Marcin Wk{a}torek & Stanis{l}aw Dro.zd.z & Jaros{l}aw Kwapie'n & Ludovico Minati & Pawe{l} O'swik{e}cimka & Marek Stanuszek, 2020. "Multiscale characteristics of the emerging global cryptocurrency market," Papers 2010.15403, arXiv.org, revised Mar 2021.
    10. Xavier Gabaix, 2009. "Power Laws in Economics and Finance," Annual Review of Economics, Annual Reviews, vol. 1(1), pages 255-294, May.
    11. Di Xiao & Jun Wang & Hongli Niu, 2016. "Volatility Analysis of Financial Agent-Based Market Dynamics from Stochastic Contact System," Computational Economics, Springer;Society for Computational Economics, vol. 48(4), pages 607-625, December.
    12. Mike, Szabolcs & Farmer, J. Doyne, 2008. "An empirical behavioral model of liquidity and volatility," Journal of Economic Dynamics and Control, Elsevier, vol. 32(1), pages 200-234, January.
    13. Taleb, Nassim Nicholas, 2009. "Errors, robustness, and the fourth quadrant," International Journal of Forecasting, Elsevier, vol. 25(4), pages 744-759, October.
    14. Göncü, Ahmet & Karahan, Mehmet Oğuz & Kuzubaş, Tolga Umut, 2016. "A comparative goodness-of-fit analysis of distributions of some Lévy processes and Heston model to stock index returns," The North American Journal of Economics and Finance, Elsevier, vol. 36(C), pages 69-83.
    15. Łukasz Bil & Dariusz Grech & Magdalena Zienowicz, 2017. "Asymmetry of price returns—Analysis and perspectives from a non-extensive statistical physics point of view," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-24, November.
    16. Gabaix, Xavier & Gopikrishnan, Parameswaran & Plerou, Vasiliki & Stanley, Eugene, 2007. "A unified econophysics explanation for the power-law exponents of stock market activity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(1), pages 81-88.
    17. Renata Rendek, 2013. "Modeling Diversified Equity Indices," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 23, July-Dece.
    18. Grobys, Klaus, 2021. "What do we know about the second moment of financial markets?," International Review of Financial Analysis, Elsevier, vol. 78(C).
    19. J. B. Glattfelder & A. Dupuis & R. B. Olsen, 2010. "Patterns in high-frequency FX data: discovery of 12 empirical scaling laws," Quantitative Finance, Taylor & Francis Journals, vol. 11(4), pages 599-614.
    20. Gu, Gao-Feng & Zhou, Wei-Xing, 2007. "Statistical properties of daily ensemble variables in the Chinese stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 383(2), pages 497-506.
    21. Christophe Chorro & Dominique Guegan & Florian Ielpo, 2008. "Option Pricing under GARCH models with Generalized Hyperbolic innovations (I) : Methodology," Post-Print halshs-00281585, HAL.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1102.5665. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.