IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v99y2008i4p715-734.html
   My bibliography  Save this article

Peaks-over-threshold stability of multivariate generalized Pareto distributions

Author

Listed:
  • Falk, Michael
  • Guillou, Armelle

Abstract

It is well-known that the univariate generalized Pareto distributions (GPD) are characterized by their peaks-over-threshold (POT) stability. We extend this result to multivariate GPDs. It is also shown that this POT stability is asymptotically shared by distributions which are in a certain neighborhood of a multivariate GPD. A multivariate extreme value distribution is a typical example. The usefulness of the results is demonstrated by various applications. We immediately obtain, for example, that the excess distribution of a linear portfolio with positive weights ai, i

Suggested Citation

  • Falk, Michael & Guillou, Armelle, 2008. "Peaks-over-threshold stability of multivariate generalized Pareto distributions," Journal of Multivariate Analysis, Elsevier, vol. 99(4), pages 715-734, April.
  • Handle: RePEc:eee:jmvana:v:99:y:2008:i:4:p:715-734
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(07)00053-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Acerbi, Carlo & Tasche, Dirk, 2002. "On the coherence of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1487-1503, July.
    2. E. Kaufmann & R. Reiss, 1993. "Strong convergence of multivariate point processes of exceedances," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 45(3), pages 433-444, September.
    3. Carlo Acerbi & Dirk Tasche, 2002. "Expected Shortfall: A Natural Coherent Alternative to Value at Risk," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 31(2), pages 379-388, July.
    4. Falk, Michael & Reiss, Rolf-Dieter, 2005. "On Pickands coordinates in arbitrary dimensions," Journal of Multivariate Analysis, Elsevier, vol. 92(2), pages 426-453, February.
    5. Michael Falk & René Michel, 2006. "Testing for Tail Independence in Extreme Value models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 58(2), pages 261-290, June.
    6. Carlo Acerbi & Claudio Nordio & Carlo Sirtori, 2001. "Expected Shortfall as a Tool for Financial Risk Management," Papers cond-mat/0102304, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Indranil Ghosh & Osborne Banks, 2021. "A Study of Bivariate Generalized Pareto Distribution and its Dependence Structure Among Model Parameters," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 575-604, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Acerbi, Carlo, 2002. "Spectral measures of risk: A coherent representation of subjective risk aversion," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1505-1518, July.
    2. Alexis Bonnet & Isabelle Nagot, 2005. "Methodology of measuring performance in alternative investment," Cahiers de la Maison des Sciences Economiques b05078, Université Panthéon-Sorbonne (Paris 1).
    3. Alexis Bonnet & Isabelle Nagot, 2005. "Methodology of measuring performance in alternative investment," Post-Print halshs-00196443, HAL.
    4. Carlo Acerbi, 2001. "Risk Aversion and Coherent Risk Measures: a Spectral Representation Theorem," Papers cond-mat/0107190, arXiv.org.
    5. Takashi Kato, 2017. "Asymptotic Analysis for Spectral Risk Measures Parameterized by Confidence Level," Papers 1711.07335, arXiv.org.
    6. Winter, Peter, 2007. "Managerial Risk Accounting and Control – A German perspective," MPRA Paper 8185, University Library of Munich, Germany.
    7. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    8. Maria Logvaneva & Mikhail Tselishchev, 2022. "On a Stochastic Model of Diversification," Papers 2204.01284, arXiv.org.
    9. Mikhail Tselishchev, 2019. "On the Concavity of Expected Shortfall," Papers 1910.00640, arXiv.org.
    10. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    11. Karma, Otto & Sander, Priit, 2006. "The impact of financial leverage on risk of equity measured by loss-oriented risk measures: An option pricing approach," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1340-1356, December.
    12. Istvan Varga-Haszonits & Fabio Caccioli & Imre Kondor, 2016. "Replica approach to mean-variance portfolio optimization," Papers 1606.08679, arXiv.org.
    13. Busetti, Fabio & Caivano, Michele & Delle Monache, Davide & Pacella, Claudia, 2021. "The time-varying risk of Italian GDP," Economic Modelling, Elsevier, vol. 101(C).
    14. Massimiliano Amarante, 2016. "A representation of risk measures," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 39(1), pages 95-103, April.
    15. Maria Stefanova, 2012. "Recovery Risiko in der Kreditportfoliomodellierung," Springer Books, Springer, number 978-3-8349-4226-5, January.
    16. Silvia Faroni & Olivier Le Courtois & Krzysztof Ostaszewski, 2022. "Equivalent Risk Indicators: VaR, TCE, and Beyond," Risks, MDPI, vol. 10(8), pages 1-19, July.
    17. Marcelo Brutti Righi & Paulo Sergio Ceretta, 2015. "Shortfall Deviation Risk: An alternative to risk measurement," Papers 1501.02007, arXiv.org, revised May 2016.
    18. Eric Beutner & Henryk Zähle, 2018. "Bootstrapping Average Value at Risk of Single and Collective Risks," Risks, MDPI, vol. 6(3), pages 1-30, September.
    19. Panna, Miskolczi, 2017. "Note On Simple And Logarithmic Return," APSTRACT: Applied Studies in Agribusiness and Commerce, AGRIMBA, vol. 11(1-2), September.
    20. Kirsten L. MacDonald & Robert J. Bianchi & Michael E. Drew, 2020. "Equity risk versus retirement adequacy: asset allocation solutions for KiwiSaver," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 60(4), pages 3851-3873, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:99:y:2008:i:4:p:715-734. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.