IDEAS home Printed from https://ideas.repec.org/a/wly/isacfm/v22y2015i4p263-281.html
   My bibliography  Save this article

Minimizing Basel III Capital Requirements with Unconditional Coverage Constraint

Author

Listed:
  • Manuel Kleinknecht
  • Wing Lon Ng

Abstract

The new Basel III framework increases the banks’ market risk capital requirements. In this paper, we introduce a new risk management approach based on the unconditional coverage test to minimize the regulatory capital requirements. Portfolios optimized with our new minimum capital constraint successfully reduce the Basel III market risk capital requirements. In general, portfolios with value‐at‐risk and conditional‐value‐at‐risk objective functions and underlying empirical distribution yield better portfolio risk profiles and have lower capital requirements. For the optimization we use the threshold‐accepting heuristic and the common trust‐region search method.

Suggested Citation

  • Manuel Kleinknecht & Wing Lon Ng, 2015. "Minimizing Basel III Capital Requirements with Unconditional Coverage Constraint," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 22(4), pages 263-281, October.
  • Handle: RePEc:wly:isacfm:v:22:y:2015:i:4:p:263-281
    DOI: 10.1002/isaf.1370
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/isaf.1370
    Download Restriction: no

    File URL: https://libkey.io/10.1002/isaf.1370?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gilli, Manfred & Maringer, Dietmar & Schumann, Enrico, 2011. "Numerical Methods and Optimization in Finance," Elsevier Monographs, Elsevier, edition 1, number 9780123756626.
    2. Gunter Dueck & Peter Winker, 1992. "New concepts and algorithms for portfolio choice," Applied Stochastic Models and Data Analysis, John Wiley & Sons, vol. 8(3), pages 159-178, September.
    3. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
    4. Alexander, Gordon J. & Baptista, Alexandre M. & Yan, Shu, 2007. "Mean-variance portfolio selection with `at-risk' constraints and discrete distributions," Journal of Banking & Finance, Elsevier, vol. 31(12), pages 3761-3781, December.
    5. Bawa, Vijay S., 1975. "Optimal rules for ordering uncertain prospects," Journal of Financial Economics, Elsevier, vol. 2(1), pages 95-121, March.
    6. Acerbi, Carlo & Tasche, Dirk, 2002. "On the coherence of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1487-1503, July.
    7. Santos, André A.P. & Nogales, Francisco J. & Ruiz, Esther & Dijk, Dick Van, 2012. "Optimal portfolios with minimum capital requirements," Journal of Banking & Finance, Elsevier, vol. 36(7), pages 1928-1942.
    8. Christoffersen, Peter, 2011. "Elements of Financial Risk Management," Elsevier Monographs, Elsevier, edition 2, number 9780123744487.
    9. Matthew Pritsker, 1997. "Evaluating Value at Risk Methodologies: Accuracy versus Computational Time," Journal of Financial Services Research, Springer;Western Finance Association, vol. 12(2), pages 201-242, October.
    10. Alexander, S. & Coleman, T.F. & Li, Y., 2006. "Minimizing CVaR and VaR for a portfolio of derivatives," Journal of Banking & Finance, Elsevier, vol. 30(2), pages 583-605, February.
    11. Carlo Acerbi & Dirk Tasche, 2002. "Expected Shortfall: A Natural Coherent Alternative to Value at Risk," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 31(2), pages 379-388, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenmei Yang & Adriano S. Koshiyama, 2019. "Assessing qualitative similarities between financial reporting frameworks using visualization and rules: COREP vs. pillar 3," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 26(1), pages 16-31, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Silvia Stanescu & Radu Tunaru, 2013. "Quantifying the uncertainty in VaR and expected shortfall estimates," Chapters, in: Adrian R. Bell & Chris Brooks & Marcel Prokopczuk (ed.), Handbook of Research Methods and Applications in Empirical Finance, chapter 15, pages 357-372, Edward Elgar Publishing.
    2. Chrétien, Stéphane & Coggins, Frank, 2010. "Performance and conservatism of monthly FHS VaR: An international investigation," International Review of Financial Analysis, Elsevier, vol. 19(5), pages 323-333, December.
    3. S. Broda & Juan Carlos Arismendi-Zambrano, 2020. "On Quadratic Forms in Multivariate Generalized Hyperbolic Random Vectors∗," Economics Department Working Paper Series n302-20.pdf, Department of Economics, National University of Ireland - Maynooth.
    4. Weiß, Gregor N.F., 2011. "Are Copula-GoF-tests of any practical use? Empirical evidence for stocks, commodities and FX futures," The Quarterly Review of Economics and Finance, Elsevier, vol. 51(2), pages 173-188, May.
    5. Charles-Olivier Amédée-Manesme & Fabrice Barthélémy & Didier Maillard, 2019. "Computation of the corrected Cornish–Fisher expansion using the response surface methodology: application to VaR and CVaR," Annals of Operations Research, Springer, vol. 281(1), pages 423-453, October.
    6. Radu Tunaru, 2015. "Model Risk in Financial Markets:From Financial Engineering to Risk Management," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 9524, August.
    7. Sonia Benito Muela & Mª Ángeles Navarro, 2018. "Assessing the importance of the choice threshold in quantifying market risk under the POT method (EVT)," Documentos de Trabajo del ICAE 2018-20, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    8. Winter, Peter, 2007. "Managerial Risk Accounting and Control – A German perspective," MPRA Paper 8185, University Library of Munich, Germany.
    9. Cui, Xueting & Zhu, Shushang & Sun, Xiaoling & Li, Duan, 2013. "Nonlinear portfolio selection using approximate parametric Value-at-Risk," Journal of Banking & Finance, Elsevier, vol. 37(6), pages 2124-2139.
    10. Qifa Xu & Lu Chen & Cuixia Jiang & Yezheng Liu, 2022. "Forecasting expected shortfall and value at risk with a joint elicitable mixed data sampling model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(3), pages 407-421, April.
    11. Furman, Edward & Landsman, Zinoviy, 2010. "Multivariate Tweedie distributions and some related capital-at-risk analyses," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 351-361, April.
    12. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    13. Maria Logvaneva & Mikhail Tselishchev, 2022. "On a Stochastic Model of Diversification," Papers 2204.01284, arXiv.org.
    14. Alexander, Gordon J. & Baptista, Alexandre M. & Yan, Shu, 2012. "When more is less: Using multiple constraints to reduce tail risk," Journal of Banking & Finance, Elsevier, vol. 36(10), pages 2693-2716.
    15. Lazar, Emese & Zhang, Ning, 2019. "Model risk of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 105(C), pages 74-93.
    16. Matthew Pritsker, 2001. "The hidden dangers of historical simulation," Finance and Economics Discussion Series 2001-27, Board of Governors of the Federal Reserve System (U.S.).
    17. Dionne, Georges & Pacurar, Maria & Zhou, Xiaozhou, 2015. "Liquidity-adjusted Intraday Value at Risk modeling and risk management: An application to data from Deutsche Börse," Journal of Banking & Finance, Elsevier, vol. 59(C), pages 202-219.
    18. Peña, Juan Ignacio & Rodríguez, Rosa & Mayoral, Silvia, 2020. "Tail risk of electricity futures," Energy Economics, Elsevier, vol. 91(C).
    19. Xuehai Zhang, 2019. "Value at Risk and Expected Shortfall under General Semi-parametric GARCH models," Working Papers CIE 123, Paderborn University, CIE Center for International Economics.
    20. Mike K. P. So & Chi-Ming Wong, 2012. "Estimation of multiple period expected shortfall and median shortfall for risk management," Quantitative Finance, Taylor & Francis Journals, vol. 12(5), pages 739-754, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:isacfm:v:22:y:2015:i:4:p:263-281. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1099-1174/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.