On the estimation of Spearman’s rho and related tests of independence for possibly discontinuous multivariate data
Author
Abstract
Suggested Citation
DOI: 10.1016/j.jmva.2013.02.007
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Jean-François Quessy, 2009. "Theoretical efficiency comparisons of independence tests based on multivariate versions of Spearman’s rho," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 70(3), pages 315-338, November.
- Mesfioui, Mhamed & Quessy, Jean-François, 2010. "Concordance measures for multivariate non-continuous random vectors," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2398-2410, November.
- Deheuvels, Paul, 1981. "An asymptotic decomposition for multivariate distribution-free tests of independence," Journal of Multivariate Analysis, Elsevier, vol. 11(1), pages 102-113, March.
- Genest, Christian & Nešlehová, Johanna, 2007. "A Primer on Copulas for Count Data," ASTIN Bulletin, Cambridge University Press, vol. 37(2), pages 475-515, November.
- Ivan Kojadinovic & Jun Yan, 2011. "Tests of serial independence for continuous multivariate time series based on a Möbius decomposition of the independence empirical copula process," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(2), pages 347-373, April.
- Ghoudi, Kilani & Kulperger, Reg J. & Rémillard, Bruno, 2001. "A Nonparametric Test of Serial Independence for Time Series and Residuals," Journal of Multivariate Analysis, Elsevier, vol. 79(2), pages 191-218, November.
- Denuit, Michel & Lambert, Philippe, 2005. "Constraints on concordance measures in bivariate discrete data," Journal of Multivariate Analysis, Elsevier, vol. 93(1), pages 40-57, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- C Genest & J G Nešlehová & B Rémillard & O A Murphy, 2019. "Testing for independence in arbitrary distributions," Biometrika, Biometrika Trust, vol. 106(1), pages 47-68.
- Liebscher Eckhard, 2014. "Copula-based dependence measures," Dependence Modeling, De Gruyter, vol. 2(1), pages 1-16, October.
- Genest, Christian & Nešlehová, Johanna G. & Rémillard, Bruno, 2017. "Asymptotic behavior of the empirical multilinear copula process under broad conditions," Journal of Multivariate Analysis, Elsevier, vol. 159(C), pages 82-110.
- Wei, Zheng & Kim, Daeyoung, 2021. "Measure of asymmetric association for ordinal contingency tables via the bilinear extension copula," Statistics & Probability Letters, Elsevier, vol. 178(C).
- Luis Ayala & Ana Pérez & Mercedes Prieto-Alaiz, 2022. "The impact of different data sources on the level and structure of income inequality," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 13(3), pages 583-611, September.
- Song, Song & Zhu, Lixing, 2016. "Group-wise semiparametric modeling: A SCSE approach," Journal of Multivariate Analysis, Elsevier, vol. 152(C), pages 1-14.
- Pinto Da Costa, Joaquim & Roque, Luís A.C. & Soares, Carlos, 2015. "The weighted rank correlation coefficient rW2 in the case of ties," Statistics & Probability Letters, Elsevier, vol. 99(C), pages 20-26.
- César García‐Gómez & Ana Pérez & Mercedes Prieto‐Alaiz, 2021. "Copula‐based analysis of multivariate dependence patterns between dimensions of poverty in Europe," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 67(1), pages 165-195, March.
- Long, Ting-Hsuan & Emura, Takeshi, 2014. "A control chart using copula-based Markov chain models," MPRA Paper 57419, University Library of Munich, Germany.
- Mhamed Mesfioui & Julien Trufin, 2022. "Bounds on Multivariate Kendall’s Tau and Spearman’s Rho for Zero-Inflated Continuous Variables and their Application to Insurance," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 1051-1059, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- C Genest & J G Nešlehová & B Rémillard & O A Murphy, 2019. "Testing for independence in arbitrary distributions," Biometrika, Biometrika Trust, vol. 106(1), pages 47-68.
- Faugeras, Olivier P., 2015. "Maximal coupling of empirical copulas for discrete vectors," Journal of Multivariate Analysis, Elsevier, vol. 137(C), pages 179-186.
- Aristidis Nikoloulopoulos & Dimitris Karlis, 2010. "Regression in a copula model for bivariate count data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(9), pages 1555-1568.
- Geenens Gery, 2020. "Copula modeling for discrete random vectors," Dependence Modeling, De Gruyter, vol. 8(1), pages 417-440, January.
- Fokianos, Konstantinos & Fried, Roland & Kharin, Yuriy & Voloshko, Valeriy, 2022. "Statistical analysis of multivariate discrete-valued time series," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
- Nasri, Bouchra R., 2022. "Tests of serial dependence for multivariate time series with arbitrary distributions," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
- Ghislain Verdier, 2024. "Goodness-of-fit procedure for gamma processes," Computational Statistics, Springer, vol. 39(5), pages 2623-2650, July.
- Siem Jan Koopman & Rutger Lit & André Lucas & Anne Opschoor, 2018. "Dynamic discrete copula models for high‐frequency stock price changes," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(7), pages 966-985, November.
- Fantazzini, Dean, 2020. "Discussing copulas with Sergey Aivazian: a memoir," MPRA Paper 102317, University Library of Munich, Germany.
- Tzougas, George & Makariou, Despoina, 2022. "The multivariate Poisson-Generalized Inverse Gaussian claim count regression model with varying dispersion and shape parameters," LSE Research Online Documents on Economics 117197, London School of Economics and Political Science, LSE Library.
- Mercadier, Cécile & Roustant, Olivier & Genest, Christian, 2022. "Linking the Hoeffding–Sobol and Möbius formulas through a decomposition of Kuo, Sloan, Wasilkowski, and Woźniakowski," Statistics & Probability Letters, Elsevier, vol. 185(C).
- Pravin Trivedi & David Zimmer, 2017. "A Note on Identification of Bivariate Copulas for Discrete Count Data," Econometrics, MDPI, vol. 5(1), pages 1-11, February.
- Mothafer, Ghasak I.M.A. & Yamamoto, Toshiyuki & Shankar, Venkataraman N., 2018. "A multivariate heterogeneous-dispersion count model for asymmetric interdependent freeway crash types," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 84-105.
- Denuit, Michel & Mesfoui, Mhamed & Trufin, Julien, 2019. "Concordance-based predictive measures in regression models for discrete responses," LIDAM Discussion Papers ISBA 2019005, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- L. L. Henn, 2022. "Limitations and performance of three approaches to Bayesian inference for Gaussian copula regression models of discrete data," Computational Statistics, Springer, vol. 37(2), pages 909-946, April.
- Mhamed Mesfioui & Julien Trufin, 2022. "Bounds on Multivariate Kendall’s Tau and Spearman’s Rho for Zero-Inflated Continuous Variables and their Application to Insurance," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 1051-1059, June.
- Jong-Min Kim & Hyunsu Ju & Yoonsung Jung, 2020. "Copula Approach for Developing a Biomarker Panel for Prediction of Dengue Hemorrhagic Fever," Annals of Data Science, Springer, vol. 7(4), pages 697-712, December.
- Fokianos, Konstantinos, 2024. "Multivariate Count Time Series Modelling," Econometrics and Statistics, Elsevier, vol. 31(C), pages 100-116.
- Pinto Da Costa, Joaquim & Roque, Luís A.C. & Soares, Carlos, 2015. "The weighted rank correlation coefficient rW2 in the case of ties," Statistics & Probability Letters, Elsevier, vol. 99(C), pages 20-26.
- Kojadinovic, Ivan & Holmes, Mark, 2009. "Tests of independence among continuous random vectors based on Cramr-von Mises functionals of the empirical copula process," Journal of Multivariate Analysis, Elsevier, vol. 100(6), pages 1137-1154, July.
More about this item
Keywords
Asymptotic variance; Checkerboard copula; Dependogram; Multilinear extension copula; Rank-based inference; Spearman’s rho; Ties; U-statistic;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:117:y:2013:i:c:p:214-228. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.