IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v117y2013icp214-228.html
   My bibliography  Save this article

On the estimation of Spearman’s rho and related tests of independence for possibly discontinuous multivariate data

Author

Listed:
  • Genest, Christian
  • Nešlehová, Johanna G.
  • Rémillard, Bruno

Abstract

Tie-corrected versions of Spearman’s rho are often used to measure the dependence in a pair of non-continuous random variables. Multivariate extensions of this coefficient, and estimators thereof, have recently been proposed by Quessy (2009a) [23] and Mesfioui and Quessy (2010) [19]. Asymptotically equivalent but numerically much simpler estimators of the same coefficients are given here. Expressions are also provided for their limiting variance, thereby correcting errors in these authors’ papers. It is further shown that the Möbius decomposition of the multilinear extension (or checkerboard) copula leads to tie-corrected versions of dependence coefficients originally introduced by Genest and Rémillard (2004) [10]. These coefficients can be used to visualize dependence structures and to construct tests of mutual independence that can be more powerful than those based on tie-corrected versions of Spearman’s rho.

Suggested Citation

  • Genest, Christian & Nešlehová, Johanna G. & Rémillard, Bruno, 2013. "On the estimation of Spearman’s rho and related tests of independence for possibly discontinuous multivariate data," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 214-228.
  • Handle: RePEc:eee:jmvana:v:117:y:2013:i:c:p:214-228
    DOI: 10.1016/j.jmva.2013.02.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X13000213
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2013.02.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jean-François Quessy, 2009. "Theoretical efficiency comparisons of independence tests based on multivariate versions of Spearman’s rho," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 70(3), pages 315-338, November.
    2. Mesfioui, Mhamed & Quessy, Jean-François, 2010. "Concordance measures for multivariate non-continuous random vectors," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2398-2410, November.
    3. Deheuvels, Paul, 1981. "An asymptotic decomposition for multivariate distribution-free tests of independence," Journal of Multivariate Analysis, Elsevier, vol. 11(1), pages 102-113, March.
    4. Genest, Christian & Nešlehová, Johanna, 2007. "A Primer on Copulas for Count Data," ASTIN Bulletin, Cambridge University Press, vol. 37(2), pages 475-515, November.
    5. Ivan Kojadinovic & Jun Yan, 2011. "Tests of serial independence for continuous multivariate time series based on a Möbius decomposition of the independence empirical copula process," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(2), pages 347-373, April.
    6. Ghoudi, Kilani & Kulperger, Reg J. & Rémillard, Bruno, 2001. "A Nonparametric Test of Serial Independence for Time Series and Residuals," Journal of Multivariate Analysis, Elsevier, vol. 79(2), pages 191-218, November.
    7. Denuit, Michel & Lambert, Philippe, 2005. "Constraints on concordance measures in bivariate discrete data," Journal of Multivariate Analysis, Elsevier, vol. 93(1), pages 40-57, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luis Ayala & Ana Pérez & Mercedes Prieto-Alaiz, 2022. "The impact of different data sources on the level and structure of income inequality," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 13(3), pages 583-611, September.
    2. Song, Song & Zhu, Lixing, 2016. "Group-wise semiparametric modeling: A SCSE approach," Journal of Multivariate Analysis, Elsevier, vol. 152(C), pages 1-14.
    3. Pinto Da Costa, Joaquim & Roque, Luís A.C. & Soares, Carlos, 2015. "The weighted rank correlation coefficient rW2 in the case of ties," Statistics & Probability Letters, Elsevier, vol. 99(C), pages 20-26.
    4. César García‐Gómez & Ana Pérez & Mercedes Prieto‐Alaiz, 2021. "Copula‐based analysis of multivariate dependence patterns between dimensions of poverty in Europe," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 67(1), pages 165-195, March.
    5. Long, Ting-Hsuan & Emura, Takeshi, 2014. "A control chart using copula-based Markov chain models," MPRA Paper 57419, University Library of Munich, Germany.
    6. C Genest & J G Nešlehová & B Rémillard & O A Murphy, 2019. "Testing for independence in arbitrary distributions," Biometrika, Biometrika Trust, vol. 106(1), pages 47-68.
    7. Liebscher Eckhard, 2014. "Copula-based dependence measures," Dependence Modeling, De Gruyter, vol. 2(1), pages 1-16, October.
    8. Genest, Christian & Nešlehová, Johanna G. & Rémillard, Bruno, 2017. "Asymptotic behavior of the empirical multilinear copula process under broad conditions," Journal of Multivariate Analysis, Elsevier, vol. 159(C), pages 82-110.
    9. Wei, Zheng & Kim, Daeyoung, 2021. "Measure of asymmetric association for ordinal contingency tables via the bilinear extension copula," Statistics & Probability Letters, Elsevier, vol. 178(C).
    10. Mhamed Mesfioui & Julien Trufin, 2022. "Bounds on Multivariate Kendall’s Tau and Spearman’s Rho for Zero-Inflated Continuous Variables and their Application to Insurance," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 1051-1059, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. C Genest & J G Nešlehová & B Rémillard & O A Murphy, 2019. "Testing for independence in arbitrary distributions," Biometrika, Biometrika Trust, vol. 106(1), pages 47-68.
    2. Geenens Gery, 2020. "Copula modeling for discrete random vectors," Dependence Modeling, De Gruyter, vol. 8(1), pages 417-440, January.
    3. Ghislain Verdier, 2024. "Goodness-of-fit procedure for gamma processes," Computational Statistics, Springer, vol. 39(5), pages 2623-2650, July.
    4. Siem Jan Koopman & Rutger Lit & André Lucas & Anne Opschoor, 2018. "Dynamic discrete copula models for high‐frequency stock price changes," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(7), pages 966-985, November.
    5. Tzougas, George & Makariou, Despoina, 2022. "The multivariate Poisson-Generalized Inverse Gaussian claim count regression model with varying dispersion and shape parameters," LSE Research Online Documents on Economics 117197, London School of Economics and Political Science, LSE Library.
    6. Pravin Trivedi & David Zimmer, 2017. "A Note on Identification of Bivariate Copulas for Discrete Count Data," Econometrics, MDPI, vol. 5(1), pages 1-11, February.
    7. L. L. Henn, 2022. "Limitations and performance of three approaches to Bayesian inference for Gaussian copula regression models of discrete data," Computational Statistics, Springer, vol. 37(2), pages 909-946, April.
    8. Mhamed Mesfioui & Julien Trufin, 2022. "Bounds on Multivariate Kendall’s Tau and Spearman’s Rho for Zero-Inflated Continuous Variables and their Application to Insurance," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 1051-1059, June.
    9. Jong-Min Kim & Hyunsu Ju & Yoonsung Jung, 2020. "Copula Approach for Developing a Biomarker Panel for Prediction of Dengue Hemorrhagic Fever," Annals of Data Science, Springer, vol. 7(4), pages 697-712, December.
    10. Pinto Da Costa, Joaquim & Roque, Luís A.C. & Soares, Carlos, 2015. "The weighted rank correlation coefficient rW2 in the case of ties," Statistics & Probability Letters, Elsevier, vol. 99(C), pages 20-26.
    11. Nagler, Thomas, 2018. "A generic approach to nonparametric function estimation with mixed data," Statistics & Probability Letters, Elsevier, vol. 137(C), pages 326-330.
    12. Smith, Michael Stanley, 2023. "Implicit Copulas: An Overview," Econometrics and Statistics, Elsevier, vol. 28(C), pages 81-104.
    13. Zilko, Aurelius A. & Kurowicka, Dorota, 2016. "Copula in a multivariate mixed discrete–continuous model," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 28-55.
    14. Xiaotian Zheng & Athanasios Kottas & Bruno Sansó, 2023. "Bayesian geostatistical modeling for discrete‐valued processes," Environmetrics, John Wiley & Sons, Ltd., vol. 34(7), November.
    15. Michel Denuit & Mhamed Mesfioui & Julien Trufin, 2019. "Bounds on Concordance-Based Validation Statistics in Regression Models for Binary Responses," Methodology and Computing in Applied Probability, Springer, vol. 21(2), pages 491-509, June.
    16. García, Jesús E. & González-López, V.A. & Nelsen, R.B., 2013. "A new index to measure positive dependence in trivariate distributions," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 481-495.
    17. Genest, Christian & Nešlehová, Johanna G. & Rémillard, Bruno, 2017. "Asymptotic behavior of the empirical multilinear copula process under broad conditions," Journal of Multivariate Analysis, Elsevier, vol. 159(C), pages 82-110.
    18. Mesfioui, Mhamed & Quessy, Jean-François, 2010. "Concordance measures for multivariate non-continuous random vectors," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2398-2410, November.
    19. George Tzougas & Despoina Makariou, 2022. "The multivariate Poisson‐Generalized Inverse Gaussian claim count regression model with varying dispersion and shape parameters," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 25(4), pages 401-417, December.
    20. Denuit, Michel & Mesfioui, Mhamet & Trufin, Julien, 2016. "Bounds on Concordance-Based Validation Statistics in Regression Models for Binary Responses," LIDAM Discussion Papers ISBA 2016046, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:117:y:2013:i:c:p:214-228. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.