IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v98y2007i9p1693-1704.html
   My bibliography  Save this article

Cross-validated bagged learning

Author

Listed:
  • Petersen, Maya L.
  • Molinaro, Annette M.
  • Sinisi, Sandra E.
  • van der Laan, Mark J.

Abstract

Many applications aim to learn a high dimensional parameter of a data generating distribution based on a sample of independent and identically distributed observations. For example, the goal might be to estimate the conditional mean of an outcome given a list of input variables. In this prediction context, bootstrap aggregating (bagging) has been introduced as a method to reduce the variance of a given estimator at little cost to bias. Bagging involves applying an estimator to multiple bootstrap samples and averaging the result across bootstrap samples. In order to address the curse of dimensionality, a common practice has been to apply bagging to estimators which themselves use cross-validation, thereby using cross-validation within a bootstrap sample to select fine-tuning parameters trading off bias and variance of the bootstrap sample-specific candidate estimators. In this article we point out that in order to achieve the correct bias variance trade-off for the parameter of interest, one should apply the cross-validation selector externally to candidate bagged estimators indexed by these fine-tuning parameters. We use three simulations to compare the new cross-validated bagging method with bagging of cross-validated estimators and bagging of non-cross-validated estimators.

Suggested Citation

  • Petersen, Maya L. & Molinaro, Annette M. & Sinisi, Sandra E. & van der Laan, Mark J., 2007. "Cross-validated bagged learning," Journal of Multivariate Analysis, Elsevier, vol. 98(9), pages 1693-1704, October.
  • Handle: RePEc:eee:jmvana:v:98:y:2007:i:9:p:1693-1704
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(07)00099-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mark van der Laan & Sandrine Dudoit & Aad van der Vaart, 2004. "The Cross-Validated Adaptive Epsilon-Net Estimator," U.C. Berkeley Division of Biostatistics Working Paper Series 1141, Berkeley Electronic Press.
    2. Sinisi Sandra E & van der Laan Mark J., 2004. "Deletion/Substitution/Addition Algorithm in Learning with Applications in Genomics," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 3(1), pages 1-40, August.
    3. Hothorn, Torsten & Lausen, Berthold, 2005. "Bundling classifiers by bagging trees," Computational Statistics & Data Analysis, Elsevier, vol. 49(4), pages 1068-1078, June.
    4. Peter Hall & Richard J. Samworth, 2005. "Properties of bagged nearest neighbour classifiers," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(3), pages 363-379, June.
    5. Borra, Simone & Di Ciaccio, Agostino, 2002. "Improving nonparametric regression methods by bagging and boosting," Computational Statistics & Data Analysis, Elsevier, vol. 38(4), pages 407-420, February.
    6. Birkner Merrill D. & Sinisi Sandra E. & van der Laan Mark J., 2005. "Multiple Testing and Data Adaptive Regression: An Application to HIV-1 Sequence Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 4(1), pages 1-30, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. J. D’Haen & D. Van Den Poel & D. Thorleuchter, 2012. "Predicting Customer Profitability During Acquisition: Finding the Optimal Combination of Data Source and Data Mining Technique," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 12/818, Ghent University, Faculty of Economics and Business Administration.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. De Bock, Koen W. & Coussement, Kristof & Van den Poel, Dirk, 2010. "Ensemble classification based on generalized additive models," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1535-1546, June.
    2. Asma Gul & Aris Perperoglou & Zardad Khan & Osama Mahmoud & Miftahuddin Miftahuddin & Werner Adler & Berthold Lausen, 2018. "Ensemble of a subset of kNN classifiers," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(4), pages 827-840, December.
    3. Adler, Werner & Lausen, Berthold, 2009. "Bootstrap estimated true and false positive rates and ROC curve," Computational Statistics & Data Analysis, Elsevier, vol. 53(3), pages 718-729, January.
    4. Will Wei Sun & Xingye Qiao & Guang Cheng, 2016. "Stabilized Nearest Neighbor Classifier and its Statistical Properties," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(515), pages 1254-1265, July.
    5. Hendrik Weisser & André Altmann & Saleta Sierra & Francesca Incardona & Daniel Struck & Anders Sönnerborg & Rolf Kaiser & Maurizio Zazzi & Monika Tschochner & Hauke Walter & Thomas Lengauer, 2010. "Only Slight Impact of Predicted Replicative Capacity for Therapy Response Prediction," PLOS ONE, Public Library of Science, vol. 5(2), pages 1-10, February.
    6. Haight, Thaddeus J. & Wang, Yue & van der Laan, Mark J. & Tager, Ira B., 2010. "A cross-validation deletion-substitution-addition model selection algorithm: Application to marginal structural models," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3080-3094, December.
    7. Rokach, Lior, 2009. "Taxonomy for characterizing ensemble methods in classification tasks: A review and annotated bibliography," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4046-4072, October.
    8. Ertefaie Ashkan & Asgharian Masoud & Stephens David A., 2018. "Variable Selection in Causal Inference using a Simultaneous Penalization Method," Journal of Causal Inference, De Gruyter, vol. 6(1), pages 1-16, March.
    9. Sinisi Sandra E. & Neugebauer Romain & van der Laan Mark J., 2006. "Cross-Validated Bagged Prediction of Survival," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 5(1), pages 1-26, May.
    10. Kusiak, Andrew & Zheng, Haiyang & Song, Zhe, 2009. "Models for monitoring wind farm power," Renewable Energy, Elsevier, vol. 34(3), pages 583-590.
    11. Rueda, Cristina, 2013. "Degrees of freedom and model selection in semiparametric additive monotone regression," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 88-99.
    12. Stefan Lessmann & Stefan Voß, 2010. "Customer-Centric Decision Support," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 2(2), pages 79-93, April.
    13. Neugebauer Romain & Schmittdiel Julie A. & van der Laan Mark J., 2016. "A Case Study of the Impact of Data-Adaptive Versus Model-Based Estimation of the Propensity Scores on Causal Inferences from Three Inverse Probability Weighting Estimators," The International Journal of Biostatistics, De Gruyter, vol. 12(1), pages 131-155, May.
    14. Odden Michelle C. & Tager Ira B. & van der Laan Mark J. & Delaney Joseph A.C. & Peralta Carmen A & Katz Ronit & Sarnak Mark J. & Psaty Bruce M. & Shlipak Michael G, 2011. "Antihypertensive Medication Use and Change in Kidney Function in Elderly Adults: A Marginal Structural Model Analysis," The International Journal of Biostatistics, De Gruyter, vol. 7(1), pages 1-19, September.
    15. Zhao, Shan & Wei, G. W., 2003. "Jump process for the trend estimation of time series," Computational Statistics & Data Analysis, Elsevier, vol. 42(1-2), pages 219-241, February.
    16. Chung, Dongjun & Kim, Hyunjoong, 2015. "Accurate ensemble pruning with PL-bagging," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 1-13.
    17. Cholaquidis, Alejandro & Fraiman, Ricardo & Kalemkerian, Juan & Llop, Pamela, 2016. "A nonlinear aggregation type classifier," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 269-281.
    18. Pere Marti-Puig & Alejandro Blanco-M & Juan José Cárdenas & Jordi Cusidó & Jordi Solé-Casals, 2019. "Feature Selection Algorithms for Wind Turbine Failure Prediction," Energies, MDPI, vol. 12(3), pages 1-18, January.
    19. Porter Kristin E. & Gruber Susan & van der Laan Mark J. & Sekhon Jasjeet S., 2011. "The Relative Performance of Targeted Maximum Likelihood Estimators," The International Journal of Biostatistics, De Gruyter, vol. 7(1), pages 1-34, August.
    20. Diogo Menezes & Mateus Mendes & Jorge Alexandre Almeida & Torres Farinha, 2020. "Wind Farm and Resource Datasets: A Comprehensive Survey and Overview," Energies, MDPI, vol. 13(18), pages 1-24, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:98:y:2007:i:9:p:1693-1704. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.