IDEAS home Printed from https://ideas.repec.org/a/bpj/sagmbi/v3y2004i1n18.html
   My bibliography  Save this article

Deletion/Substitution/Addition Algorithm in Learning with Applications in Genomics

Author

Listed:
  • Sinisi Sandra E

    (University of California, Berkeley)

  • van der Laan Mark J.

    (University of California, Berkeley)

Abstract

van der Laan and Dudoit (2003) provide a road map for estimation and performance assessment where a parameter of interest is defined as the risk minimizer for a suitable loss function and candidate estimators are generated using a loss function. After briefly reviewing this approach, this article proposes a general deletion/substitution/addition algorithm for minimizing, over subsets of variables (e.g., basis functions), the empirical risk of subset-specific estimators of the parameter of interest. This algorithm provides us with a new class of loss-based cross-validated algorithms in prediction of univariate outcomes, which can be extended to handle multivariate outcomes, conditional density and hazard estimation, and censored outcomes such as survival. In the context of regression, using polynomial basis functions, we study the properties of the deletion/substitution/addition algorithm in simulations and apply the method to detect transcription factor binding sites in yeast gene expression experiments.

Suggested Citation

  • Sinisi Sandra E & van der Laan Mark J., 2004. "Deletion/Substitution/Addition Algorithm in Learning with Applications in Genomics," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 3(1), pages 1-40, August.
  • Handle: RePEc:bpj:sagmbi:v:3:y:2004:i:1:n:18
    DOI: 10.2202/1544-6115.1069
    as

    Download full text from publisher

    File URL: https://doi.org/10.2202/1544-6115.1069
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.2202/1544-6115.1069?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Hui & Rose, Sherri & van der Laan, Mark J., 2011. "Finding quantitative trait loci genes with collaborative targeted maximum likelihood learning," Statistics & Probability Letters, Elsevier, vol. 81(7), pages 792-796, July.
    2. Sinisi Sandra E. & Neugebauer Romain & van der Laan Mark J., 2006. "Cross-Validated Bagged Prediction of Survival," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 5(1), pages 1-26, May.
    3. Neugebauer Romain & Schmittdiel Julie A. & van der Laan Mark J., 2016. "A Case Study of the Impact of Data-Adaptive Versus Model-Based Estimation of the Propensity Scores on Causal Inferences from Three Inverse Probability Weighting Estimators," The International Journal of Biostatistics, De Gruyter, vol. 12(1), pages 131-155, May.
    4. Odden Michelle C. & Tager Ira B. & van der Laan Mark J. & Delaney Joseph A.C. & Peralta Carmen A & Katz Ronit & Sarnak Mark J. & Psaty Bruce M. & Shlipak Michael G, 2011. "Antihypertensive Medication Use and Change in Kidney Function in Elderly Adults: A Marginal Structural Model Analysis," The International Journal of Biostatistics, De Gruyter, vol. 7(1), pages 1-19, September.
    5. Elise D Riley & Torsten B Neilands & Kelly Moore & Jennifer Cohen & David R Bangsberg & Diane Havlir, 2012. "Social, Structural and Behavioral Determinants of Overall Health Status in a Cohort of Homeless and Unstably Housed HIV-Infected Men," PLOS ONE, Public Library of Science, vol. 7(4), pages 1-7, April.
    6. Petersen, Maya L. & Molinaro, Annette M. & Sinisi, Sandra E. & van der Laan, Mark J., 2007. "Cross-validated bagged learning," Journal of Multivariate Analysis, Elsevier, vol. 98(9), pages 1693-1704, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sagmbi:v:3:y:2004:i:1:n:18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.