IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v60y1998i1p189-199.html
   My bibliography  Save this article

Polynomial regression with errors in the variables

Author

Listed:
  • Chi‐Lung Cheng
  • Hans Schneeweiss

Abstract

A polynomial functional relationship with errors in both variables can be consistently estimated by constructing an ordinary least squares estimator for the regression coefficients, assuming hypothetically the latent true regressor variable to be known, and then adjusting for the errors. If normality of the error variables can be assumed, the estimator can be simplified considerably. Only the variance of the errors in the regressor variable and its covariance with the errors of the response variable need to be known. If the variance of the errors in the dependent variable is also known, another estimator can be constructed.

Suggested Citation

  • Chi‐Lung Cheng & Hans Schneeweiss, 1998. "Polynomial regression with errors in the variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(1), pages 189-199.
  • Handle: RePEc:bla:jorssb:v:60:y:1998:i:1:p:189-199
    DOI: 10.1111/1467-9868.00118
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9868.00118
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-9868.00118?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kato, Kengo & Sasaki, Yuya, 2019. "Uniform confidence bands for nonparametric errors-in-variables regression," Journal of Econometrics, Elsevier, vol. 213(2), pages 516-555.
    2. Kukush, Alexander & Maschke, Erich Otto, 2003. "The efficiency of adjusted least squares in the linear functional relationship," Journal of Multivariate Analysis, Elsevier, vol. 87(2), pages 261-274, November.
    3. Wang, Liqun & Hsiao, Cheng, 2011. "Method of moments estimation and identifiability of semiparametric nonlinear errors-in-variables models," Journal of Econometrics, Elsevier, vol. 165(1), pages 30-44.
    4. Fazzi, Antonio & Kukush, Alexander & Markovsky, Ivan, 2024. "Bias correction for Vandermonde low-rank approximation," Econometrics and Statistics, Elsevier, vol. 31(C), pages 38-48.
    5. Garcia, Tanya P. & Ma, Yanyuan, 2017. "Simultaneous treatment of unspecified heteroskedastic model error distribution and mismeasured covariates for restricted moment models," Journal of Econometrics, Elsevier, vol. 200(2), pages 194-206.
    6. Sergiy Shklyar & Hans Schneeweiss & Alexander Kukush, 2007. "Quasi Score is more Efficient than Corrected Score in a Polynomial Measurement Error Model," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 65(3), pages 275-295, May.
    7. Stoker, Thomas M. & Berndt, Ernst R. & Denny Ellerman, A. & Schennach, Susanne M., 2005. "Panel data analysis of U.S. coal productivity," Journal of Econometrics, Elsevier, vol. 127(2), pages 131-164, August.
    8. Otsu, Taisuke & Taylor, Luke, 2021. "Specification Testing For Errors-In-Variables Models," Econometric Theory, Cambridge University Press, vol. 37(4), pages 747-768, August.
    9. Thomas Augustin & Helmut Küchenhoff & Matthias Schmid, 2022. "Nachruf Hans Schneeweiß," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 16(2), pages 149-154, June.
    10. Biørn, Erik, 2017. "Identification and Method of Moments Estimation in Polynomial Measurement Error Models," Memorandum 01/2017, Oslo University, Department of Economics.
    11. Hans Schneeweiss & Thomas Augustin, 2006. "Some recent advances in measurement error models and methods," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 90(1), pages 183-197, March.
    12. Schneeweiss, Hans & Cheng, Chi-Lun, 2006. "Bias of the structural quasi-score estimator of a measurement error model under misspecification of the regressor distribution," Journal of Multivariate Analysis, Elsevier, vol. 97(2), pages 455-473, February.
    13. Arturo Zavala & Heleno Bolfarine & Mário Castro, 2007. "Consistent estimation and testing in heteroscedastic polynomial errors-in-variables models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 59(3), pages 515-530, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:60:y:1998:i:1:p:189-199. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.