On a resampling approach for tests on the number of clusters with mixture model-based clustering of tissue samples
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- McLachlan, G. J. & Peel, D. & Bean, R. W., 2003. "Modelling high-dimensional data by mixtures of factor analyzers," Computational Statistics & Data Analysis, Elsevier, vol. 41(3-4), pages 379-388, January.
- Allison, David B. & Gadbury, Gary L. & Heo, Moonseong & Fernandez, Jose R. & Lee, Cheol-Koo & Prolla, Tomas A. & Weindruch, Richard, 2002. "A mixture model approach for the analysis of microarray gene expression data," Computational Statistics & Data Analysis, Elsevier, vol. 39(1), pages 1-20, March.
- Robert Tibshirani & Guenther Walther & Trevor Hastie, 2001. "Estimating the number of clusters in a data set via the gap statistic," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 411-423.
- Huber Wolfgang & von Heydebreck Anja & Sueltmann Holger & Poustka Annemarie & Vingron Martin, 2003. "Parameter estimation for the calibration and variance stabilization of microarray data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 2(1), pages 1-24, April.
- G. J. McLachlan, 1987. "On Bootstrapping the Likelihood Ratio Test Statistic for the Number of Components in a Normal Mixture," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 36(3), pages 318-324, November.
- Coleman, Dan & Dong, Xioapeng & Hardin, Johanna & Rocke, David M. & Woodruff, David L., 1999. "Some computational issues in cluster analysis with no a priori metric," Computational Statistics & Data Analysis, Elsevier, vol. 31(1), pages 1-11, July.
- J. Hartigan, 1985. "Statistical theory in clustering," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 63-76, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Polymenis, Athanase, 2014. "A combined likelihood ratio/information ratio bootstrap technique for estimating the number of components in finite mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 107-115.
- Mark Chiang & Boris Mirkin, 2010. "Intelligent Choice of the Number of Clusters in K-Means Clustering: An Experimental Study with Different Cluster Spreads," Journal of Classification, Springer;The Classification Society, vol. 27(1), pages 3-40, March.
- Wong, Tony S.T. & Lam, Kwok Fai & Zhao, Victoria X., 2018. "Asymptotic null distribution of the modified likelihood ratio test for homogeneity in finite mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 248-257.
- Wong, Tony Siu Tung & Li, Wai Keung, 2014. "Test for homogeneity in gamma mixture models using likelihood ratio," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 127-137.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Charles Bouveyron & Camille Brunet-Saumard, 2014. "Discriminative variable selection for clustering with the sparse Fisher-EM algorithm," Computational Statistics, Springer, vol. 29(3), pages 489-513, June.
- Z. Volkovich & Z. Barzily & G.-W. Weber & D. Toledano-Kitai & R. Avros, 2012. "An application of the minimal spanning tree approach to the cluster stability problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(1), pages 119-139, March.
- McLachlan, G.J. & Bean, R.W. & Ben-Tovim Jones, L., 2007. "Extension of the mixture of factor analyzers model to incorporate the multivariate t-distribution," Computational Statistics & Data Analysis, Elsevier, vol. 51(11), pages 5327-5338, July.
- Z. Volkovich & D. Toledano-Kitai & G.-W. Weber, 2013. "Self-learning K-means clustering: a global optimization approach," Journal of Global Optimization, Springer, vol. 56(2), pages 219-232, June.
- Maciejowska, Katarzyna, 2013. "Assessing the number of components in a normal mixture: an alternative approach," MPRA Paper 50303, University Library of Munich, Germany.
- Hunt, Lynette A. & Basford, Kaye E., 2016. "Comparing classical criteria for selecting intra-class correlated features in Multimix," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 350-366.
- Ranjan Maitra & Ivan P. Ramler, 2009. "Clustering in the Presence of Scatter," Biometrics, The International Biometric Society, vol. 65(2), pages 341-352, June.
- Gallegos, María Teresa & Ritter, Gunter, 2010. "Using combinatorial optimization in model-based trimmed clustering with cardinality constraints," Computational Statistics & Data Analysis, Elsevier, vol. 54(3), pages 637-654, March.
- Fetene B. Tekle & Dereje W. Gudicha & Jeroen K. Vermunt, 2016. "Power analysis for the bootstrap likelihood ratio test for the number of classes in latent class models," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 10(2), pages 209-224, June.
- Thiemo Fetzer & Samuel Marden, 2017.
"Take What You Can: Property Rights, Contestability and Conflict,"
Economic Journal, Royal Economic Society, vol. 0(601), pages 757-783, May.
- Thiemo, Fetzer & Marden, Samuel, 2016. "Take what you can: property rights, contestability and conflict," CAGE Online Working Paper Series 285, Competitive Advantage in the Global Economy (CAGE).
- Thiemo Fetzer & Samuel Marden, 2016. "Take what you can: property rights, contestability and conflict," HiCN Working Papers 214, Households in Conflict Network.
- Thiemo Fetzer & Samuel Marden, 2016. "Take What You Can: Property Rights, Contestability and Conflict," SERC Discussion Papers 0194, Centre for Economic Performance, LSE.
- Thiemo Fetzer & Samuel Marden, 2016. "Take what you can: property rights, contestability and conflict," Working Paper Series 09216, Department of Economics, University of Sussex Business School.
- Fetzer, Thiemo & Marden, Samuel, 2016. "Take what you can: property rights, contestability andconflict," LSE Research Online Documents on Economics 66534, London School of Economics and Political Science, LSE Library.
- Daniel Agness & Travis Baseler & Sylvain Chassang & Pascaline Dupas & Erik Snowberg, 2022.
"Valuing the Time of the Self-Employed,"
Working Papers
2022-2, Princeton University. Economics Department..
- Daniel Agness & Travis Baseler & Sylvain Chassang & Pascaline Dupas & Erik Snowberg, 2023. "Valuing the Time of the Self-Employed," Working Papers 310, Princeton University, Department of Economics, Center for Economic Policy Studies..
- Agness, Daniel & Baseler, Travis & Chassang, Sylvain & Dupas, Pascaline & Snowberg, Erik, 2022. "Valuing the Time of the Self-Employed," CEPR Discussion Papers 17017, C.E.P.R. Discussion Papers.
- Daniel Agness & Travis Baseler & Sylvain Chassang & Pascaline Dupas & Erik Snowberg, 2022. "Valuing the Time of the Self-Employed," CESifo Working Paper Series 9567, CESifo.
- Daniel J. Agness & Travis Baseler & Sylvain Chassang & Pascaline Dupas & Erik Snowberg, 2022. "Valuing the Time of the Self-Employed," NBER Working Papers 29752, National Bureau of Economic Research, Inc.
- Khanh Duong, 2024. "Is meritocracy just? New evidence from Boolean analysis and Machine learning," Journal of Computational Social Science, Springer, vol. 7(2), pages 1795-1821, October.
- Batool, Fatima & Hennig, Christian, 2021. "Clustering with the Average Silhouette Width," Computational Statistics & Data Analysis, Elsevier, vol. 158(C).
- Nicoleta Serban & Huijing Jiang, 2012. "Multilevel Functional Clustering Analysis," Biometrics, The International Biometric Society, vol. 68(3), pages 805-814, September.
- Parrish, Rudolph S. & Spencer III, Horace J. & Xu, Ping, 2009. "Distribution modeling and simulation of gene expression data," Computational Statistics & Data Analysis, Elsevier, vol. 53(5), pages 1650-1660, March.
- Orietta Nicolis & Jean Paul Maidana & Fabian Contreras & Danilo Leal, 2024. "Analyzing the Impact of COVID-19 on Economic Sustainability: A Clustering Approach," Sustainability, MDPI, vol. 16(4), pages 1-30, February.
- Li, Pai-Ling & Chiou, Jeng-Min, 2011. "Identifying cluster number for subspace projected functional data clustering," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2090-2103, June.
- Yaeji Lim & Hee-Seok Oh & Ying Kuen Cheung, 2019. "Multiscale Clustering for Functional Data," Journal of Classification, Springer;The Classification Society, vol. 36(2), pages 368-391, July.
- Forzani, Liliana & Gieco, Antonella & Tolmasky, Carlos, 2017. "Likelihood ratio test for partial sphericity in high and ultra-high dimensions," Journal of Multivariate Analysis, Elsevier, vol. 159(C), pages 18-38.
- Yujia Li & Xiangrui Zeng & Chien‐Wei Lin & George C. Tseng, 2022. "Simultaneous estimation of cluster number and feature sparsity in high‐dimensional cluster analysis," Biometrics, The International Biometric Society, vol. 78(2), pages 574-585, June.
More about this item
Keywords
Microarray gene expression data Mixture models Clustering of tissue samples Tests on number of clusters Likelihood ratio statistic Resampling approach;Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:90:y:2004:i:1:p:90-105. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.