IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v70y2014icp127-137.html
   My bibliography  Save this article

Test for homogeneity in gamma mixture models using likelihood ratio

Author

Listed:
  • Wong, Tony Siu Tung
  • Li, Wai Keung

Abstract

A testing problem of homogeneity in gamma mixture models is studied. It is found that there is a proportion of the penalized likelihood ratio test statistic that degenerates to zero. The limiting distribution of this statistic is found to be the chi-bar-square distributions. The degeneration is due to the negative-definiteness of a complicated random matrix, depending on the shape parameter under the null hypothesis. In light of this dependency, bounds on the distribution are introduced and a weighted average procedure is proposed. Simulation suggests that the results are accurate and consistent, and that the asymptotic result applies to the maximum likelihood estimator, obtained via an Expectation–Maximization algorithm.

Suggested Citation

  • Wong, Tony Siu Tung & Li, Wai Keung, 2014. "Test for homogeneity in gamma mixture models using likelihood ratio," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 127-137.
  • Handle: RePEc:eee:csdana:v:70:y:2014:i:c:p:127-137
    DOI: 10.1016/j.csda.2013.09.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947313003162
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2013.09.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xin Liu & Cristian Pasarica & Yongzhao Shao, 2003. "Testing Homogeneity in Gamma Mixture Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 30(1), pages 227-239, March.
    2. Charnigo R. & Sun J., 2004. "Testing Homogeneity in a Mixture Distribution via the L2 Distance Between Competing Models," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 488-498, January.
    3. P. Li & J. Chen & P. Marriott, 2009. "Non-finite Fisher information and homogeneity: an EM approach," Biometrika, Biometrika Trust, vol. 96(2), pages 411-426.
    4. Hanfeng Chen & Jiahua Chen & John D. Kalbfleisch, 2001. "A modified likelihood ratio test for homogeneity in finite mixture models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(1), pages 19-29.
    5. McLachlan, G. J. & Khan, N., 2004. "On a resampling approach for tests on the number of clusters with mixture model-based clustering of tissue samples," Journal of Multivariate Analysis, Elsevier, vol. 90(1), pages 90-105, July.
    6. McNeil, Alexander J., 1997. "Estimating the Tails of Loss Severity Distributions Using Extreme Value Theory," ASTIN Bulletin, Cambridge University Press, vol. 27(1), pages 117-137, May.
    7. G. J. McLachlan, 1987. "On Bootstrapping the Likelihood Ratio Test Statistic for the Number of Components in a Normal Mixture," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 36(3), pages 318-324, November.
    8. Song Qin, Yong & Smith, Bruce, 2006. "The likelihood ratio test for homogeneity in bivariate normal mixtures," Journal of Multivariate Analysis, Elsevier, vol. 97(2), pages 474-491, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mingxing He & Jiahua Chen, 2022. "Consistency of the MLE under a two-parameter Gamma mixture model with a structural shape parameter," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(8), pages 951-975, November.
    2. Mingxing He & Jiahua Chen, 2022. "Strong consistency of the MLE under two-parameter Gamma mixture models with a structural scale parameter," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(1), pages 125-154, March.
    3. Wong, Tony S.T. & Lam, Kwok Fai & Zhao, Victoria X., 2018. "Asymptotic null distribution of the modified likelihood ratio test for homogeneity in finite mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 248-257.
    4. Jin Seo Cho & Peter C. B. Phillips & Juwon Seo, 2019. "Parametric Inference on the Mean of Functional Data Applied to Lifetime Income Curves," Working papers 2019rwp-153, Yonsei University, Yonsei Economics Research Institute.
    5. Jin Seo Cho & Peter C. B. Phillips & Juwon Seo, 2022. "Parametric Conditional Mean Inference With Functional Data Applied To Lifetime Income Curves," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 63(1), pages 391-456, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wong, Tony S.T. & Lam, Kwok Fai & Zhao, Victoria X., 2018. "Asymptotic null distribution of the modified likelihood ratio test for homogeneity in finite mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 248-257.
    2. Meng Li & Sijia Xiang & Weixin Yao, 2016. "Robust estimation of the number of components for mixtures of linear regression models," Computational Statistics, Springer, vol. 31(4), pages 1539-1555, December.
    3. Derek S. Young & Xi Chen & Dilrukshi C. Hewage & Ricardo Nilo-Poyanco, 2019. "Finite mixture-of-gamma distributions: estimation, inference, and model-based clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(4), pages 1053-1082, December.
    4. Charnigo, Richard & Fan, Qian & Bittel, Douglas & Dai, Hongying, 2013. "Testing unilateral versus bilateral normal contamination," Statistics & Probability Letters, Elsevier, vol. 83(1), pages 163-167.
    5. Kasahara Hiroyuki & Shimotsu Katsumi, 2012. "Testing the Number of Components in Finite Mixture Models," Global COE Hi-Stat Discussion Paper Series gd12-259, Institute of Economic Research, Hitotsubashi University.
    6. Hiroyuki Kasahara & Katsumi Shimotsu, 2017. "Testing the Order of Multivariate Normal Mixture Models," CIRJE F-Series CIRJE-F-1044, CIRJE, Faculty of Economics, University of Tokyo.
    7. Lo, Yungtai, 2005. "Likelihood ratio tests of the number of components in a normal mixture with unequal variances," Statistics & Probability Letters, Elsevier, vol. 71(3), pages 225-235, March.
    8. Lee, David & Li, Wai Keung & Wong, Tony Siu Tung, 2012. "Modeling insurance claims via a mixture exponential model combined with peaks-over-threshold approach," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 538-550.
    9. Cho, Jin Seo & White, Halbert, 2010. "Testing for unobserved heterogeneity in exponential and Weibull duration models," Journal of Econometrics, Elsevier, vol. 157(2), pages 458-480, August.
    10. Chuan Hong & Yang Ning & Shuang Wang & Hao Wu & Raymond J. Carroll & Yong Chen, 2017. "PLEMT: A Novel Pseudolikelihood-Based EM Test for Homogeneity in Generalized Exponential Tilt Mixture Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1393-1404, October.
    11. Polymenis, Athanase, 2014. "A combined likelihood ratio/information ratio bootstrap technique for estimating the number of components in finite mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 107-115.
    12. Jiaying Gu & Roger Koenker & Stanislav Volgushev, 2017. "Testing for homogeneity in mixture models," CeMMAP working papers 39/17, Institute for Fiscal Studies.
    13. Karl Mosler & Christoph Scheicher, 2008. "Homogeneity testing in a Weibull mixture model," Statistical Papers, Springer, vol. 49(2), pages 315-332, April.
    14. Garel, Bernard, 2007. "Recent asymptotic results in testing for mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 51(11), pages 5295-5304, July.
    15. Jin Seo Cho & Jin Seok Park & Sang Woo Park, 2018. "Testing for the Conditional Geometric Mixture Distribution," Working papers 2018rwp-123, Yonsei University, Yonsei Economics Research Institute.
    16. Shaoting Li & Jiahua Chen, 2023. "Mixture of shifted binomial distributions for rating data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(5), pages 833-853, October.
    17. Jiaying Gu & Roger Koenker & Stanislav Volgushev, 2017. "Testing for homogeneity in mixture models," CeMMAP working papers CWP39/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    18. Cong, Lin & Yao, Weixin, 2021. "A Likelihood Ratio Test of a Homoscedastic Multivariate Normal Mixture Against a Heteroscedastic Multivariate Normal Mixture," Econometrics and Statistics, Elsevier, vol. 18(C), pages 79-88.
    19. Hung-Chia Chen & James J. Chen, 2016. "Hybrid Mixture Model for Subpopulation Identification," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 8(1), pages 28-42, June.
    20. Ning, Wei & Zhang, Sanguo & Yu, Chang, 2009. "A moment-based test for the homogeneity in mixture natural exponential family with quadratic variance functions," Statistics & Probability Letters, Elsevier, vol. 79(6), pages 828-834, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:70:y:2014:i:c:p:127-137. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.