IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v90y2004i1p106-131.html
   My bibliography  Save this article

Finding predictive gene groups from microarray data

Author

Listed:
  • Dettling, Marcel
  • Bühlmann, Peter

Abstract

Microarray experiments generate large datasets with expression values for thousands of genes, but not more than a few dozens of samples. A challenging task with these data is to reveal groups of genes which act together and whose collective expression is strongly associated with an outcome variable of interest. To find these groups, we suggest the use of supervised algorithms: these are procedures which use external information about the response variable for grouping the genes. We present Pelora, an algorithm based on penalized logistic regression analysis, that combines gene selection, gene grouping and sample classification in a supervised, simultaneous way. With an empirical study on six different microarray datasets, we show that Pelora identifies gene groups whose expression centroids have very good predictive potential and yield results that can keep up with state-of-the-art classification methods based on single genes. Thus, our gene groups can be beneficial in medical diagnostics and prognostics, but they may also provide more biological insights into gene function and regulation.

Suggested Citation

  • Dettling, Marcel & Bühlmann, Peter, 2004. "Finding predictive gene groups from microarray data," Journal of Multivariate Analysis, Elsevier, vol. 90(1), pages 106-131, July.
  • Handle: RePEc:eee:jmvana:v:90:y:2004:i:1:p:106-131
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(04)00024-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dudoit S. & Fridlyand J. & Speed T. P, 2002. "Comparison of Discrimination Methods for the Classification of Tumors Using Gene Expression Data," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 77-87, March.
    2. Ash A. Alizadeh & Michael B. Eisen & R. Eric Davis & Chi Ma & Izidore S. Lossos & Andreas Rosenwald & Jennifer C. Boldrick & Hajeer Sabet & Truc Tran & Xin Yu & John I. Powell & Liming Yang & Gerald E, 2000. "Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling," Nature, Nature, vol. 403(6769), pages 503-511, February.
    3. Laura J. van 't Veer & Hongyue Dai & Marc J. van de Vijver & Yudong D. He & Augustinus A. M. Hart & Mao Mao & Hans L. Peterse & Karin van der Kooy & Matthew J. Marton & Anke T. Witteveen & George J. S, 2002. "Gene expression profiling predicts clinical outcome of breast cancer," Nature, Nature, vol. 415(6871), pages 530-536, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cui, Qiurong & Xu, Yuqing & Zhang, Zhengjun & Chan, Vincent, 2021. "Max-linear regression models with regularization," Journal of Econometrics, Elsevier, vol. 222(1), pages 579-600.
    2. Zambom, Adriano Zanin & Akritas, Michael G., 2015. "Nonparametric significance testing and group variable selection," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 51-60.
    3. Mostafa Rezaei & Ivor Cribben & Michele Samorani, 2021. "A clustering-based feature selection method for automatically generated relational attributes," Annals of Operations Research, Springer, vol. 303(1), pages 233-263, August.
    4. Jessie J Hsu & Dianne M Finkelstein & David A Schoenfeld, 2015. "Outcome-Driven Cluster Analysis with Application to Microarray Data," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-15, November.
    5. Howard D. Bondell & Brian J. Reich, 2008. "Simultaneous Regression Shrinkage, Variable Selection, and Supervised Clustering of Predictors with OSCAR," Biometrics, The International Biometric Society, vol. 64(1), pages 115-123, March.
    6. Jonathan Eckstein & Wang Yao, 2017. "Approximate ADMM algorithms derived from Lagrangian splitting," Computational Optimization and Applications, Springer, vol. 68(2), pages 363-405, November.
    7. Yao, Xingzhi & Izzeldin, Marwan & Li, Zhenxiong, 2019. "A novel cluster HAR-type model for forecasting realized volatility," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1318-1331.
    8. Garcia-Magariños Manuel & Antoniadis Anestis & Cao Ricardo & González-Manteiga Wenceslao, 2010. "Lasso Logistic Regression, GSoft and the Cyclic Coordinate Descent Algorithm: Application to Gene Expression Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-30, August.
    9. M. Marques Alves & Jonathan Eckstein & Marina Geremia & Jefferson G. Melo, 2020. "Relative-error inertial-relaxed inexact versions of Douglas-Rachford and ADMM splitting algorithms," Computational Optimization and Applications, Springer, vol. 75(2), pages 389-422, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. van Wieringen, Wessel N. & Kun, David & Hampel, Regina & Boulesteix, Anne-Laure, 2009. "Survival prediction using gene expression data: A review and comparison," Computational Statistics & Data Analysis, Elsevier, vol. 53(5), pages 1590-1603, March.
    2. Jan, Budczies & Kosztyla, Daniel & von Törne, Christian & Stenzinger, Albrecht & Darb-Esfahani, Silvia & Dietel, Manfred & Denkert, Carsten, 2014. "cancerclass: An R Package for Development and Validation of Diagnostic Tests from High-Dimensional Molecular Data," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 59(i01).
    3. Guan-Hua Huang & Su-Mei Wang & Chung-Chu Hsu, 2011. "Optimization-Based Model Fitting for Latent Class and Latent Profile Analyses," Psychometrika, Springer;The Psychometric Society, vol. 76(4), pages 584-611, October.
    4. Sewell, Daniel K., 2018. "Visualizing data through curvilinear representations of matrices," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 255-270.
    5. Kubokawa, Tatsuya & Srivastava, Muni S., 2008. "Estimation of the precision matrix of a singular Wishart distribution and its application in high-dimensional data," Journal of Multivariate Analysis, Elsevier, vol. 99(9), pages 1906-1928, October.
    6. Hossain, Ahmed & Beyene, Joseph & Willan, Andrew R. & Hu, Pingzhao, 2009. "A flexible approximate likelihood ratio test for detecting differential expression in microarray data," Computational Statistics & Data Analysis, Elsevier, vol. 53(10), pages 3685-3695, August.
    7. Zemin Zheng & Jie Zhang & Yang Li, 2022. "L 0 -Regularized Learning for High-Dimensional Additive Hazards Regression," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2762-2775, September.
    8. Prendergast, Luke A. & Li Wai Suen, Connie, 2011. "A new and practical influence measure for subsets of covariance matrix sample principal components with applications to high dimensional datasets," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 752-764, January.
    9. Bilin Zeng & Xuerong Meggie Wen & Lixing Zhu, 2017. "A link-free sparse group variable selection method for single-index model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(13), pages 2388-2400, October.
    10. Márton Gosztonyi & Csákné Filep Judit, 2022. "Profiling (Non-)Nascent Entrepreneurs in Hungary Based on Machine Learning Approaches," Sustainability, MDPI, vol. 14(6), pages 1-20, March.
    11. Wang, Tao & Xu, Pei-Rong & Zhu, Li-Xing, 2012. "Non-convex penalized estimation in high-dimensional models with single-index structure," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 221-235.
    12. Lian, I.B. & Chang, C.J. & Liang, Y.J. & Yang, M.J. & Fann, C.S.J., 2007. "Identifying differentially expressed genes in dye-swapped microarray experiments of small sample size," Computational Statistics & Data Analysis, Elsevier, vol. 51(5), pages 2602-2620, February.
    13. Zhao, Jianhua & Yu, Philip L.H. & Shi, Lei & Li, Shulan, 2012. "Separable linear discriminant analysis," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4290-4300.
    14. Shaheena Bashir & Edward Carter, 2010. "Penalized multinomial mixture logit model," Computational Statistics, Springer, vol. 25(1), pages 121-141, March.
    15. Park, Junyong & Park, DoHwan, 2015. "Stein’s method in high dimensional classification and applications," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 110-125.
    16. Chakraborty, Sounak, 2009. "Bayesian binary kernel probit model for microarray based cancer classification and gene selection," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4198-4209, October.
    17. Kasim Adetayo & Lin Dan & Van Sanden Suzy & Clevert Djork-Arné & Bijnens Luc & Göhlmann Hinrich & Amaratunga Dhammika & Hochreiter Sepp & Shkedy Ziv & Talloen Willem, 2010. "Informative or Noninformative Calls for Gene Expression: A Latent Variable Approach," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-31, January.
    18. Dawit G. Tadesse & Mark Carpenter, 2019. "A method for selecting the relevant dimensions for high-dimensional classification in singular vector spaces," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(2), pages 405-426, June.
    19. Khan Md Hasinur Rahaman & Bhadra Anamika & Howlader Tamanna, 2019. "Stability selection for lasso, ridge and elastic net implemented with AFT models," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 18(5), pages 1-14, October.
    20. Zhang, Shucong & Zhou, Yong, 2018. "Variable screening for ultrahigh dimensional heterogeneous data via conditional quantile correlations," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 1-13.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:90:y:2004:i:1:p:106-131. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.