IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v92y2005i2p227-238.html
   My bibliography  Save this article

Improving on the mle of a bounded location parameter for spherical distributions

Author

Listed:
  • Marchand, Éric
  • Perron, François

Abstract

For the problem of estimating under squared error loss the location parameter of a p-variate spherically symmetric distribution where the location parameter lies in a ball of radius m, a general sufficient condition for an estimator to dominate the maximum likelihood estimator is obtained. Dominance results are then made explicit for the case of a multivariate student distribution with d degrees of freedom and, in particular, we show that the Bayes estimator with respect to a uniform prior on the boundary of the parameter space dominates the maximum likelihood estimator whenever and d[greater-or-equal, slanted]p. The sufficient condition matches the one obtained by Marchand and Perron (Ann. Statist. 29 (2001) 1078) in the normal case with identity covariance matrix. Furthermore, we derive an explicit class of estimators which, for , dominate the maximum likelihood estimator simultaneously for the normal distribution with identity covariance matrix and for all multivariate student distributions with d degrees of freedom, d[greater-or-equal, slanted]p. Finally, we obtain estimators which dominate the maximum likelihood estimator simultaneously for all distributions in the subclass of scale mixtures of normals for which the scaling random variable is bounded below by some positive constant with probability one.

Suggested Citation

  • Marchand, Éric & Perron, François, 2005. "Improving on the mle of a bounded location parameter for spherical distributions," Journal of Multivariate Analysis, Elsevier, vol. 92(2), pages 227-238, February.
  • Handle: RePEc:eee:jmvana:v:92:y:2005:i:2:p:227-238
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(03)00165-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cellier, D. & Fourdrinier, D., 1995. "Shrinkage Estimators under Spherical Symmetry for the General Linear Model," Journal of Multivariate Analysis, Elsevier, vol. 52(2), pages 338-351, February.
    2. Robert, Christian, 1990. "Modified Bessel functions and their applications in probability and statistics," Statistics & Probability Letters, Elsevier, vol. 9(2), pages 155-161, February.
    3. Marchand, Éric & Perron, François, 2002. "On the minimax estimator of a bounded normal mean," Statistics & Probability Letters, Elsevier, vol. 58(4), pages 327-333, July.
    4. Srivastava, M. S. & Bilodeau, M., 1989. "Stein estimation under elliptical distributions," Journal of Multivariate Analysis, Elsevier, vol. 28(2), pages 247-259, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fourdrinier, Dominique & Strawderman, William E. & Wells, Martin T., 2003. "Robust shrinkage estimation for elliptically symmetric distributions with unknown covariance matrix," Journal of Multivariate Analysis, Elsevier, vol. 85(1), pages 24-39, April.
    2. Kubokawa, T. & Srivastava, M. S., 2001. "Robust Improvement in Estimation of a Mean Matrix in an Elliptically Contoured Distribution," Journal of Multivariate Analysis, Elsevier, vol. 76(1), pages 138-152, January.
    3. Fourdrinier, Dominique & Marchand, Éric, 2010. "On Bayes estimators with uniform priors on spheres and their comparative performance with maximum likelihood estimators for estimating bounded multivariate normal means," Journal of Multivariate Analysis, Elsevier, vol. 101(6), pages 1390-1399, July.
    4. Fourdrinier Dominique & Strawderman William E. & Wells Martin T., 2009. "Improved estimation for elliptically symmetric distributions with unknown block diagonal covariance matrix," Statistics & Risk Modeling, De Gruyter, vol. 26(3), pages 203-217, April.
    5. Andrés Martín & Ernesto Estrada, 2023. "Fractional-Modified Bessel Function of the First Kind of Integer Order," Mathematics, MDPI, vol. 11(7), pages 1-13, March.
    6. Frahm, Gabriel & Memmel, Christoph, 2008. "Dominating estimators for the global minimum variance portfolio," Discussion Papers in Econometrics and Statistics 2/08, University of Cologne, Institute of Econometrics and Statistics.
    7. Fourdrinier, Dominique & Strawderman, William E., 2008. "A unified and generalized set of shrinkage bounds on minimax Stein estimates," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2221-2233, November.
    8. Fourdrinier, Dominique & Ouassou, Idir & Strawderman, William E., 2003. "Estimation of a parameter vector when some components are restricted," Journal of Multivariate Analysis, Elsevier, vol. 86(1), pages 14-27, July.
    9. Arashi, M. & Kibria, B.M. Golam & Norouzirad, M. & Nadarajah, S., 2014. "Improved preliminary test and Stein-rule Liu estimators for the ill-conditioned elliptical linear regression model," Journal of Multivariate Analysis, Elsevier, vol. 126(C), pages 53-74.
    10. Muhammad Qasim, 2024. "A weighted average limited information maximum likelihood estimator," Statistical Papers, Springer, vol. 65(5), pages 2641-2666, July.
    11. Dominique Fourdrinier & Tatsuya Kubokawa & William E. Strawderman, 2023. "Shrinkage Estimation of a Location Parameter for a Multivariate Skew Elliptic Distribution," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 808-828, February.
    12. Fourdrinier Dominique & Lemaire Anne-Sophie, 2000. "ESTIMATION OF THE MEAN OF A e1-EXPONENTIAL MULTIVARIATE DISTRIBUTION," Statistics & Risk Modeling, De Gruyter, vol. 18(3), pages 259-274, March.
    13. M. Arashi & A. Saleh & S. Tabatabaey, 2010. "Estimation of parameters of parallelism model with elliptically distributed errors," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 71(1), pages 79-100, January.
    14. Árpád Baricz & Dragana Jankov Maširević & Tibor K. Pogány, 2021. "Approximation of CDF of Non-Central Chi-Square Distribution by Mean-Value Theorems for Integrals," Mathematics, MDPI, vol. 9(2), pages 1-12, January.
    15. Marchand, Éric & Perron, François, 2002. "On the minimax estimator of a bounded normal mean," Statistics & Probability Letters, Elsevier, vol. 58(4), pages 327-333, July.
    16. Aurélie Boisbunon & Stéphane Canu & Dominique Fourdrinier & William Strawderman & Martin T. Wells, 2014. "Akaike's Information Criterion, C p and Estimators of Loss for Elliptically Symmetric Distributions," International Statistical Review, International Statistical Institute, vol. 82(3), pages 422-439, December.
    17. He Kun & Strawderman William E., 2001. "Estimation In Spherically Symmetric Regression With Random Design," Statistics & Risk Modeling, De Gruyter, vol. 19(1), pages 41-50, January.
    18. Jan Beran & Britta Steffens & Sucharita Ghosh, 2022. "On nonparametric regression for bivariate circular long-memory time series," Statistical Papers, Springer, vol. 63(1), pages 29-52, February.
    19. Kazuhiro Ohtani, 1998. "An MSE comparison of the restricted Stein-rule and minimum mean squared error estimators in regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 7(2), pages 361-376, December.
    20. Liebscher Eckhard, 2023. "Constructing models for spherical and elliptical densities," Dependence Modeling, De Gruyter, vol. 11(1), pages 1-19, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:92:y:2005:i:2:p:227-238. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.