IDEAS home Printed from https://ideas.repec.org/a/gam/jstats/v7y2024i1p16-283d1351822.html
   My bibliography  Save this article

Comments on the Bernoulli Distribution and Hilbe’s Implicit Extra-Dispersion

Author

Listed:
  • Daniel A. Griffith

    (School of Economic, Political and Policy Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA)

Abstract

For decades, conventional wisdom maintained that binary 0–1 Bernoulli random variables cannot contain extra-binomial variation. Taking an unorthodox stance, Hilbe actively disagreed, especially for correlated observation instances, arguing that the universally adopted diagnostic Pearson or deviance dispersion statistics are insensitive to a variance anomaly in a binary context, and hence simply fail to detect it. However, having the intuition and insight to sense the existence of this departure from standard mathematical statistical theory, but being unable to effectively isolate it, he classified this particular over-/under-dispersion phenomenon as implicit. This paper explicitly exposes his hidden quantity by demonstrating that the variance in/deflation it represents occurs in an underlying predicted beta random variable whose real number values are rounded to their nearest integers to convert to a Bernoulli random variable, with this discretization masking any materialized extra-Bernoulli variation. In doing so, asymptotics linking the beta-binomial and Bernoulli distributions show another conventional wisdom misconception, namely a mislabeling substitution involving the quasi-Bernoulli random variable; this undeniably is not a quasi-likelihood situation. A public bell pepper disease dataset exhibiting conspicuous spatial autocorrelation furnishes empirical examples illustrating various features of this advocated proposition.

Suggested Citation

  • Daniel A. Griffith, 2024. "Comments on the Bernoulli Distribution and Hilbe’s Implicit Extra-Dispersion," Stats, MDPI, vol. 7(1), pages 1-15, March.
  • Handle: RePEc:gam:jstats:v:7:y:2024:i:1:p:16-283:d:1351822
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-905X/7/1/16/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-905X/7/1/16/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daniel A Griffith, 2004. "A Spatial Filtering Specification for the Autologistic Model," Environment and Planning A, , vol. 36(10), pages 1791-1811, October.
    2. Kaiser, Mark S. & Cressie, Noel, 1997. "Modeling Poisson variables with positive spatial dependence," Statistics & Probability Letters, Elsevier, vol. 35(4), pages 423-432, November.
    3. Hodges, James S. & Reich, Brian J., 2010. "Adding Spatially-Correlated Errors Can Mess Up the Fixed Effect You Love," The American Statistician, American Statistical Association, vol. 64(4), pages 325-334.
    4. Silvia Ferrari & Francisco Cribari-Neto, 2004. "Beta Regression for Modelling Rates and Proportions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 31(7), pages 799-815.
    5. Julian Besag & Jeremy York & Annie Mollié, 1991. "Bayesian image restoration, with two applications in spatial statistics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 43(1), pages 1-20, March.
    6. Daniel A. Griffith, 2003. "Spatial Autocorrelation and Spatial Filtering," Advances in Spatial Science, Springer, number 978-3-540-24806-4, december.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haining, Robert & Law, Jane & Griffith, Daniel, 2009. "Modelling small area counts in the presence of overdispersion and spatial autocorrelation," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 2923-2937, June.
    2. Daniel A. Griffith, 2019. "Negative Spatial Autocorrelation: One of the Most Neglected Concepts in Spatial Statistics," Stats, MDPI, vol. 2(3), pages 1-28, August.
    3. Lan Hu & Yongwan Chun & Daniel A. Griffith, 2020. "Uncovering a positive and negative spatial autocorrelation mixture pattern: a spatial analysis of breast cancer incidences in Broward County, Florida, 2000–2010," Journal of Geographical Systems, Springer, vol. 22(3), pages 291-308, July.
    4. Douglas R. M. Azevedo & Marcos O. Prates & Dipankar Bandyopadhyay, 2021. "MSPOCK: Alleviating Spatial Confounding in Multivariate Disease Mapping Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 464-491, September.
    5. Yongwan Chun, 2008. "Modeling network autocorrelation within migration flows by eigenvector spatial filtering," Journal of Geographical Systems, Springer, vol. 10(4), pages 317-344, December.
    6. Duncan Lee & Alastair Rushworth & Sujit K. Sahu, 2014. "A Bayesian localized conditional autoregressive model for estimating the health effects of air pollution," Biometrics, The International Biometric Society, vol. 70(2), pages 419-429, June.
    7. Lambert, Dayton M. & Brown, Jason P. & Florax, Raymond J.G.M., 2010. "A two-step estimator for a spatial lag model of counts: Theory, small sample performance and an application," Regional Science and Urban Economics, Elsevier, vol. 40(4), pages 241-252, July.
    8. Roberto Patuelli & Daniel A. Griffith & Michael Tiefelsdorf & Peter Nijkamp, 2011. "Spatial Filtering and Eigenvector Stability: Space-Time Models for German Unemployment Data," International Regional Science Review, , vol. 34(2), pages 253-280, April.
    9. Daniel A. Griffith & Richard E. Plant, 2022. "Statistical Analysis in the Presence of Spatial Autocorrelation: Selected Sampling Strategy Effects," Stats, MDPI, vol. 5(4), pages 1-20, December.
    10. Yongwan Chun & Daniel A. Griffith & Monghyeon Lee & Parmanand Sinha, 2016. "Eigenvector selection with stepwise regression techniques to construct eigenvector spatial filters," Journal of Geographical Systems, Springer, vol. 18(1), pages 67-85, January.
    11. Panczak, Radoslaw & Moser, André & Held, Leonhard & Jones, Philip A. & Rühli, Frank J. & Staub, Kaspar, 2017. "A tall order: Small area mapping and modelling of adult height among Swiss male conscripts," Economics & Human Biology, Elsevier, vol. 26(C), pages 61-69.
    12. Lan Hu & Daniel A. Griffith & Yongwan Chun, 2018. "Space-Time Statistical Insights about Geographic Variation in Lung Cancer Incidence Rates: Florida, USA, 2000–2011," IJERPH, MDPI, vol. 15(11), pages 1-18, October.
    13. Philip A. White & Durban G. Keeler & Daniel Sheanshang & Summer Rupper, 2022. "Improving piecewise linear snow density models through hierarchical spatial and orthogonal functional smoothing," Environmetrics, John Wiley & Sons, Ltd., vol. 33(5), August.
    14. João B. M. Pereira & Widemberg S. Nobre & Igor F. L. Silva & Alexandra M. Schmidt, 2020. "Spatial confounding in hurdle multilevel beta models: the case of the Brazilian Mathematical Olympics for Public Schools," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(3), pages 1051-1073, June.
    15. Cici Bauer & Jon Wakefield, 2018. "Stratified space–time infectious disease modelling, with an application to hand, foot and mouth disease in China," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1379-1398, November.
    16. Hauke Thaden & Thomas Kneib, 2018. "Structural Equation Models for Dealing With Spatial Confounding," The American Statistician, Taylor & Francis Journals, vol. 72(3), pages 239-252, July.
    17. Duncan Lee & Richard Mitchell, 2013. "Locally adaptive spatial smoothing using conditional auto-regressive models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 62(4), pages 593-608, August.
    18. Danlin Yu & Chuanglin Fang, 2022. "How Neighborhood Characteristics Influence Neighborhood Crimes: A Bayesian Hierarchical Spatial Analysis," IJERPH, MDPI, vol. 19(18), pages 1-16, September.
    19. Edgar Santos‐Fernandez & Erin E. Peterson & Julie Vercelloni & Em Rushworth & Kerrie Mengersen, 2021. "Correcting misclassification errors in crowdsourced ecological data: A Bayesian perspective," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(1), pages 147-173, January.
    20. Ying C. MacNab, 2018. "Some recent work on multivariate Gaussian Markov random fields," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(3), pages 497-541, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jstats:v:7:y:2024:i:1:p:16-283:d:1351822. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.