IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v204y2024ics0047259x24000666.html
   My bibliography  Save this article

Bayesian covariance structure modeling of interval-censored multi-way nested survival data

Author

Listed:
  • Baas, Stef
  • Fox, Jean-Paul
  • Boucherie, Richard J.

Abstract

A Bayesian covariance structure model (BCSM) is proposed for interval-censored multi-way nested survival data. This flexible modeling framework generalizes mixed effects survival models by allowing positive and negative associations among clustered observations. Conjugate shifted-inverse gamma priors are proposed for the covariance parameters, implying inverse gamma priors for the eigenvalues of the covariance matrix, which ensures a positive definite covariance matrix under posterior analysis. A numerically efficient Gibbs sampling procedure is defined for balanced nested designs. This requires sampling latent variables from their marginal full conditional distributions, which are derived through a recursive formula. This makes the estimation procedure suitable for interval-censored data with large cluster sizes. For unbalanced nested designs, a novel (balancing) data augmentation procedure is introduced to improve the efficiency of the Gibbs sampler. The Gibbs sampling procedure is validated in two simulation studies. The linear transformation BCSM (LT-BCSM) was applied to two-way nested interval-censored event times to analyze differences in adverse events between three groups of patients, who were randomly allocated to treatment with different stents (BIO-RESORT). The parameters of the structured covariance matrix represented unobserved heterogeneity in treatment effects and were examined to detect differential treatment effects. A comparison was made with inference results under a random effects linear transformation model. It was concluded that the LT-BCSM led to inferences with higher posterior credibility, a more profound way of quantifying evidence for risk equivalence of the three treatments, and it was more robust to prior specifications.

Suggested Citation

  • Baas, Stef & Fox, Jean-Paul & Boucherie, Richard J., 2024. "Bayesian covariance structure modeling of interval-censored multi-way nested survival data," Journal of Multivariate Analysis, Elsevier, vol. 204(C).
  • Handle: RePEc:eee:jmvana:v:204:y:2024:i:c:s0047259x24000666
    DOI: 10.1016/j.jmva.2024.105359
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X24000666
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2024.105359?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:204:y:2024:i:c:s0047259x24000666. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.