IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v50y2023i4p1756-1794.html
   My bibliography  Save this article

Adaptive estimation of intensity in a doubly stochastic Poisson process

Author

Listed:
  • Thomas Deschatre

Abstract

In this paper, I consider a doubly stochastic Poisson process with intensity λt=qXt$$ {\lambda}_t=q\left({X}_t\right) $$ where X$$ X $$ is a continuous Itô semi‐martingale. Both processes are observed continuously over a fixed period 0,1$$ \left[0,1\right] $$. I propose a local polynomial estimator for the function q$$ q $$ on a given interval. Next, I propose a method to select the bandwidth in a nonasymptotic framework that leads to an oracle inequality. Considering the asymptotic n$$ n $$, and q=nq˜$$ q=n\tilde{q} $$, the accuracy of the proposed estimator over the Hölder class of order β$$ \beta $$ is n−β2β+1$$ {n}^{\frac{-\beta }{2\beta +1}} $$ if the degree of the chosen polynomial is greater than ⌊β⌋$$ \left\lfloor \beta \right\rfloor $$ and it is optimal in the minimax setting. I apply those results to data on French temperature and electricity spot prices from which I infer the intensity of electricity spot spikes as a function of the temperature.

Suggested Citation

  • Thomas Deschatre, 2023. "Adaptive estimation of intensity in a doubly stochastic Poisson process," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 50(4), pages 1756-1794, December.
  • Handle: RePEc:bla:scjsta:v:50:y:2023:i:4:p:1756-1794
    DOI: 10.1111/sjos.12651
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/sjos.12651
    Download Restriction: no

    File URL: https://libkey.io/10.1111/sjos.12651?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Alvaro Cartea & Marcelo Figueroa, 2005. "Pricing in Electricity Markets: A Mean Reverting Jump Diffusion Model with Seasonality," Applied Mathematical Finance, Taylor & Francis Journals, vol. 12(4), pages 313-335.
    2. Utikal, Klaus J., 1993. "Nonparametric inference for a doubly stochastic Poisson process," Stochastic Processes and their Applications, Elsevier, vol. 45(2), pages 331-349, April.
    3. Claire Lacour & Pascal Massart & Vincent Rivoirard, 2017. "Estimator Selection: a New Method with Applications to Kernel Density Estimation," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 79(2), pages 298-335, August.
    4. Hoffmann, Marc, 1999. "Adaptive estimation in diffusion processes," Stochastic Processes and their Applications, Elsevier, vol. 79(1), pages 135-163, January.
    5. Fred Espen Benth & Jūratė Šaltytė Benth, 2011. "Weather Derivatives and Stochastic Modelling of Temperature," International Journal of Stochastic Analysis, Hindawi, vol. 2011, pages 1-21, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Afanasyev, Dmitriy O. & Fedorova, Elena A. & Popov, Viktor U., 2015. "Fine structure of the price–demand relationship in the electricity market: Multi-scale correlation analysis," Energy Economics, Elsevier, vol. 51(C), pages 215-226.
    2. Oosthuizen, Anna Maria & Inglesi-Lotz, Roula & Thopil, George Alex, 2022. "The relationship between renewable energy and retail electricity prices: Panel evidence from OECD countries," Energy, Elsevier, vol. 238(PB).
    3. Van Ha Hoang & Thanh Mai Pham Ngoc & Vincent Rivoirard & Viet Chi Tran, 2022. "Nonparametric estimation of the fragmentation kernel based on a partial differential equation stationary distribution approximation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(1), pages 4-43, March.
    4. Nowotarski, Jakub & Tomczyk, Jakub & Weron, Rafał, 2013. "Robust estimation and forecasting of the long-term seasonal component of electricity spot prices," Energy Economics, Elsevier, vol. 39(C), pages 13-27.
    5. Fiuza de Bragança, Gabriel Godofredo & Daglish, Toby, 2016. "Can market power in the electricity spot market translate into market power in the hedge market?," Energy Economics, Elsevier, vol. 58(C), pages 11-26.
    6. Jun Maekawa & Koji Shimada, 2019. "A Speculative Trading Model for the Electricity Market: Based on Japan Electric Power Exchange," Energies, MDPI, vol. 12(15), pages 1-15, July.
    7. Moreno, Manuel & Novales, Alfonso & Platania, Federico, 2019. "Long-term swings and seasonality in energy markets," European Journal of Operational Research, Elsevier, vol. 279(3), pages 1011-1023.
    8. Marcelo G. Figueroa, 2006. "Pricing Multiple Interruptible-Swing Contracts," Birkbeck Working Papers in Economics and Finance 0606, Birkbeck, Department of Economics, Mathematics & Statistics.
    9. Afanasyev, Dmitriy O. & Fedorova, Elena A., 2019. "On the impact of outlier filtering on the electricity price forecasting accuracy," Applied Energy, Elsevier, vol. 236(C), pages 196-210.
    10. Michel Culot & Valérie Goffin & Steve Lawford & Sébastien de Meten & Yves Smeers, 2013. "Practical stochastic modelling of electricity prices," Post-Print hal-01021603, HAL.
    11. Aït-Sahalia, Yacine & Park, Joon Y., 2016. "Bandwidth selection and asymptotic properties of local nonparametric estimators in possibly nonstationary continuous-time models," Journal of Econometrics, Elsevier, vol. 192(1), pages 119-138.
    12. Umut Ugurlu & Ilkay Oksuz & Oktay Tas, 2018. "Electricity Price Forecasting Using Recurrent Neural Networks," Energies, MDPI, vol. 11(5), pages 1-23, May.
    13. Jacobs, Kris & Li, Yu & Pirrong, Craig, 2022. "Supply, demand, and risk premiums in electricity markets," Journal of Banking & Finance, Elsevier, vol. 135(C).
    14. Zachmann, Georg, 2013. "A stochastic fuel switching model for electricity prices," Energy Economics, Elsevier, vol. 35(C), pages 5-13.
    15. Alexandre Lucas & Konstantinos Pegios & Evangelos Kotsakis & Dan Clarke, 2020. "Price Forecasting for the Balancing Energy Market Using Machine-Learning Regression," Energies, MDPI, vol. 13(20), pages 1-16, October.
    16. Somani, Abhishek, 2012. "Financial risk management and market performance in restructured electric power markets: Theoretical and agent-based test bed studies," ISU General Staff Papers 201201010800003479, Iowa State University, Department of Economics.
    17. Hoffmann, Marc & Marguet, Aline, 2019. "Statistical estimation in a randomly structured branching population," Stochastic Processes and their Applications, Elsevier, vol. 129(12), pages 5236-5277.
    18. Aur'elien Alfonsi & Nerea Vadillo, 2023. "Risk valuation of quanto derivatives on temperature and electricity," Papers 2310.07692, arXiv.org, revised Apr 2024.
    19. Galarneau-Vincent, Rémi & Gauthier, Geneviève & Godin, Frédéric, 2023. "Foreseeing the worst: Forecasting electricity DART spikes," Energy Economics, Elsevier, vol. 119(C).
    20. Auer, Benjamin R., 2016. "How does Germany's green energy policy affect electricity market volatility? An application of conditional autoregressive range models," Energy Policy, Elsevier, vol. 98(C), pages 621-628.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:50:y:2023:i:4:p:1756-1794. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.