IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v203y2024ics0047259x24000290.html
   My bibliography  Save this article

Multivariate unified skew-t distributions and their properties

Author

Listed:
  • Wang, Kesen
  • Karling, Maicon J.
  • Arellano-Valle, Reinaldo B.
  • Genton, Marc G.

Abstract

The unified skew-t (SUT) is a flexible parametric multivariate distribution that accounts for skewness and heavy tails in the data. A few of its properties can be found scattered in the literature or in a parameterization that does not follow the original one for unified skew-normal (SUN) distributions, yet a systematic study is lacking. In this work, explicit properties of the multivariate SUT distribution are presented, such as its stochastic representations, moments, SUN-scale mixture representation, linear transformation, additivity, marginal distribution, canonical form, quadratic form, conditional distribution, change of latent dimensions, Mardia measures of multivariate skewness and kurtosis, and non-identifiability issue. These results are given in a parameterization that reduces to the original SUN distribution as a sub-model, hence facilitating the use of the SUT for applications. Several models based on the SUT distribution are provided for illustration.

Suggested Citation

  • Wang, Kesen & Karling, Maicon J. & Arellano-Valle, Reinaldo B. & Genton, Marc G., 2024. "Multivariate unified skew-t distributions and their properties," Journal of Multivariate Analysis, Elsevier, vol. 203(C).
  • Handle: RePEc:eee:jmvana:v:203:y:2024:i:c:s0047259x24000290
    DOI: 10.1016/j.jmva.2024.105322
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X24000290
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2024.105322?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Karling, Maicon J. & Durante, Daniele & Genton, Marc G., 2024. "Conjugacy properties of multivariate unified skew-elliptical distributions," Journal of Multivariate Analysis, Elsevier, vol. 204(C).
    2. Reinaldo Arellano-Valle & Marc Genton, 2010. "An invariance property of quadratic forms in random vectors with a selection distribution, with application to sample variogram and covariogram estimators," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(2), pages 363-381, April.
    3. Karlsson, Sune & Mazur, Stepan & Nguyen, Hoang, 2023. "Vector autoregression models with skewness and heavy tails," Journal of Economic Dynamics and Control, Elsevier, vol. 146(C).
    4. Reinaldo B. Arellano-Valle & Adelchi Azzalini, 2022. "Some properties of the unified skew-normal distribution," Statistical Papers, Springer, vol. 63(2), pages 461-487, April.
    5. Reinaldo B. Arellano-Valle & Marc G. Genton, 2010. "Multivariate extended skew-t distributions and related families," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 201-234.
    6. Daniele Durante, 2019. "Conjugate Bayes for probit regression via unified skew-normal distributions," Biometrika, Biometrika Trust, vol. 106(4), pages 765-779.
    7. Antonella Capitanio, 2020. "On The Canonical Form Of Scale Mixtures Of Skew-Normal Distributions," Statistica, Department of Statistics, University of Bologna, vol. 80(2), pages 145-160.
    8. Arellano-Valle, Reinaldo B. & Ferreira, Clécio S. & Genton, Marc G., 2018. "Scale and shape mixtures of multivariate skew-normal distributions," Journal of Multivariate Analysis, Elsevier, vol. 166(C), pages 98-110.
    9. Niccolò Anceschi & Augusto Fasano & Daniele Durante & Giacomo Zanella, 2023. "Bayesian Conjugacy in Probit, Tobit, Multinomial Probit and Extensions: A Review and New Results," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 118(542), pages 1451-1469, April.
    10. Abe, Toshihiro & Fujisawa, Hironori & Kawashima, Takayuki & Ley, Christophe, 2021. "EM algorithm using overparameterization for the multivariate skew-normal distribution," Econometrics and Statistics, Elsevier, vol. 19(C), pages 151-168.
    11. Emmanuel O. Ogundimu & Jane L. Hutton, 2016. "A Sample Selection Model with Skew-normal Distribution," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(1), pages 172-190, March.
    12. Azzalini, Adelchi, 2022. "An overview on the progeny of the skew-normal family— A personal perspective," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    13. Adelchi Azzalini & Antonella Capitanio, 2003. "Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t‐distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 367-389, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Azzalini, Adelchi, 2022. "An overview on the progeny of the skew-normal family— A personal perspective," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    2. Mondal, Sagnik & Genton, Marc G., 2024. "A multivariate skew-normal-Tukey-h distribution," Journal of Multivariate Analysis, Elsevier, vol. 200(C).
    3. Yin, Chuancun & Balakrishnan, Narayanaswamy, 2024. "Stochastic representations and probabilistic characteristics of multivariate skew-elliptical distributions," Journal of Multivariate Analysis, Elsevier, vol. 199(C).
    4. Kim, Hyoung-Moon & Ryu, Duchwan & Mallick, Bani K. & Genton, Marc G., 2014. "Mixtures of skewed Kalman filters," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 228-251.
    5. Christopher J. Adcock, 2022. "Properties and Limiting Forms of the Multivariate Extended Skew-Normal and Skew-Student Distributions," Stats, MDPI, vol. 5(1), pages 1-42, March.
    6. Lee, Sharon X. & McLachlan, Geoffrey J., 2022. "An overview of skew distributions in model-based clustering," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    7. Montes-Galdón, Carlos & Paredes, Joan & Wolf, Elias, 2022. "Conditional density forecasting: a tempered importance sampling approach," Working Paper Series 2754, European Central Bank.
    8. Zinoviy Landsman & Udi Makov & Tomer Shushi, 2017. "Extended Generalized Skew-Elliptical Distributions and their Moments," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 79(1), pages 76-100, February.
    9. Wei Huang & Meng-Shiuh Chang, 2021. "Gold and Government Bonds as Safe-Haven Assets Against Stock Market Turbulence in China," SAGE Open, , vol. 11(1), pages 21582440219, January.
    10. C. J. Adcock, 2023. "The Linear Skew-t Distribution and Its Properties," Stats, MDPI, vol. 6(1), pages 1-30, February.
    11. Cabral, Celso Rômulo Barbosa & da-Silva, Cibele Queiroz & Migon, Helio S., 2014. "A dynamic linear model with extended skew-normal for the initial distribution of the state parameter," Computational Statistics & Data Analysis, Elsevier, vol. 74(C), pages 64-80.
    12. Kim, Hyoung-Moon & Genton, Marc G., 2011. "Characteristic functions of scale mixtures of multivariate skew-normal distributions," Journal of Multivariate Analysis, Elsevier, vol. 102(7), pages 1105-1117, August.
    13. Adelchi Azzalini & Marc G. Genton & Bruno Scarpa, 2010. "Invariance-based estimating equations for skew-symmetric distributions," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 275-298.
    14. Hok Shing Kwong & Saralees Nadarajah, 2022. "A New Robust Class of Skew Elliptical Distributions," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 1669-1691, September.
    15. Valeriano, Katherine A.L. & Galarza, Christian E. & Matos, Larissa A. & Lachos, Victor H., 2023. "Likelihood-based inference for the multivariate skew-t regression with censored or missing responses," Journal of Multivariate Analysis, Elsevier, vol. 196(C).
    16. Padoan, Simone A., 2011. "Multivariate extreme models based on underlying skew-t and skew-normal distributions," Journal of Multivariate Analysis, Elsevier, vol. 102(5), pages 977-991, May.
    17. Olcay Arslan, 2015. "Variance-mean mixture of the multivariate skew normal distribution," Statistical Papers, Springer, vol. 56(2), pages 353-378, May.
    18. Raúl Alejandro Morán-Vásquez & Edwin Zarrazola & Daya K. Nagar, 2022. "Some Statistical Aspects of the Truncated Multivariate Skew- t Distribution," Mathematics, MDPI, vol. 10(15), pages 1-14, August.
    19. Zhongwei Zhang & Reinaldo B. Arellano‐Valle & Marc G. Genton & Raphaël Huser, 2023. "Tractable Bayes of skew‐elliptical link models for correlated binary data," Biometrics, The International Biometric Society, vol. 79(3), pages 1788-1800, September.
    20. Baishuai Zuo & Narayanaswamy Balakrishnan & Chuancun Yin, 2023. "An analysis of multivariate measures of skewness and kurtosis of skew-elliptical distributions," Papers 2311.18176, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:203:y:2024:i:c:s0047259x24000290. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.