IDEAS home Printed from https://ideas.repec.org/a/bot/rivsta/v80y2020i2p145-160.html
   My bibliography  Save this article

On The Canonical Form Of Scale Mixtures Of Skew-Normal Distributions

Author

Listed:
  • Antonella Capitanio

    (Università di Bologna)

Abstract

The canonical form of scale mixtures of multivariate skew-normal distribution is defined, emphasizing its role in summarizing some key properties of this class of distributions. It is also shown that the canonical form corresponds to an affine invariant co-ordinate system as defined in Tyler et al. (2009), and a method for obtaining the linear transform that converts a scale mixture of multivariate skew-normal distribution into a canonical form is presented. Related results, where the particular case of the multivariate skew t distribution is considered in greater detail, are the general expression of the Mardia indices of multivariate skewness and kurtosis and the reduction of dimensionality in calculating the mode.

Suggested Citation

  • Antonella Capitanio, 2020. "On The Canonical Form Of Scale Mixtures Of Skew-Normal Distributions," Statistica, Department of Statistics, University of Bologna, vol. 80(2), pages 145-160.
  • Handle: RePEc:bot:rivsta:v:80:y:2020:i:2:p:145-160
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Azzalini, Adelchi, 2022. "An overview on the progeny of the skew-normal family— A personal perspective," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    2. Christopher J. Adcock, 2022. "Properties and Limiting Forms of the Multivariate Extended Skew-Normal and Skew-Student Distributions," Stats, MDPI, vol. 5(1), pages 1-42, March.
    3. Mondal, Sagnik & Genton, Marc G., 2024. "A multivariate skew-normal-Tukey-h distribution," Journal of Multivariate Analysis, Elsevier, vol. 200(C).
    4. Baishuai Zuo & Narayanaswamy Balakrishnan & Chuancun Yin, 2023. "An analysis of multivariate measures of skewness and kurtosis of skew-elliptical distributions," Papers 2311.18176, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bot:rivsta:v:80:y:2020:i:2:p:145-160. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Giovanna Galatà (email available below). General contact details of provider: https://edirc.repec.org/data/dsbolit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.