IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v110y2015i510p867-877.html
   My bibliography  Save this article

Likelihood Ratio Test for Multi-Sample Mixture Model and Its Application to Genetic Imprinting

Author

Listed:
  • Shaoting Li
  • Jiahua Chen
  • Jianhua Guo
  • Bing-Yi Jing
  • Shui-Ying Tsang
  • Hong Xue

Abstract

Genomic imprinting is a known aspect of the etiology of many diseases. The imprinting phenomenon depicts differential expression levels of the allele depending on its parental origin. When the parental origin is unknown, the expression level has a finite normal mixture distribution. In such applications, a random sample of expression levels consists of three subsamples according to the number of minor alleles an individual possesses, of which one is the mixture and the other two are homogeneous. This understanding leads to a likelihood ratio test (LRT) for the presence of imprinting. Because of the nonregularity of the finite mixture model, the classical asymptotic conclusions on likelihood-based inference are not applicable. We show that the maximum likelihood estimator of the mixing distribution remains consistent. More interestingly, thanks to the homogeneous subsamples, the LRT statistic has an elegant and rather distinct 0.5χ-super-2 1 + 0.5χ-super-2 2 null limiting distribution. Simulation studies confirm that the limiting distribution provides precise approximations of the finite sample distributions under various parameter settings. The LRT is applied to expression data. Our analyses provide evidence for imprinting for a number of isoform expressions.

Suggested Citation

  • Shaoting Li & Jiahua Chen & Jianhua Guo & Bing-Yi Jing & Shui-Ying Tsang & Hong Xue, 2015. "Likelihood Ratio Test for Multi-Sample Mixture Model and Its Application to Genetic Imprinting," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 867-877, June.
  • Handle: RePEc:taf:jnlasa:v:110:y:2015:i:510:p:867-877
    DOI: 10.1080/01621459.2014.939272
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2014.939272
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2014.939272?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Hanfeng & Chen, Jiahua, 2001. "Large sample distribution of the likelihood ratio test for normal mixtures," Statistics & Probability Letters, Elsevier, vol. 52(2), pages 125-133, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bai, Yansong & Zhang, Yong & Liu, Congmin, 2023. "Moderate deviation principle for likelihood ratio test in multivariate linear regression model," Journal of Multivariate Analysis, Elsevier, vol. 194(C).
    2. Yufan Wang & Xingzhong Xu, 2023. "A Posterior p -Value for Homogeneity Testing of the Three-Sample Problem," Mathematics, MDPI, vol. 11(18), pages 1-25, September.
    3. Wong, Tony S.T. & Lam, Kwok Fai & Zhao, Victoria X., 2018. "Asymptotic null distribution of the modified likelihood ratio test for homogeneity in finite mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 248-257.
    4. Pan, Lanfeng & Li, Yehua & He, Kevin & Li, Yanming & Li, Yi, 2020. "Generalized linear mixed models with Gaussian mixture random effects: Inference and application," Journal of Multivariate Analysis, Elsevier, vol. 175(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song Qin, Yong & Smith, Bruce, 2006. "The likelihood ratio test for homogeneity in bivariate normal mixtures," Journal of Multivariate Analysis, Elsevier, vol. 97(2), pages 474-491, February.
    2. Maciejowska, Katarzyna, 2013. "Assessing the number of components in a normal mixture: an alternative approach," MPRA Paper 50303, University Library of Munich, Germany.
    3. Garel, Bernard, 2007. "Recent asymptotic results in testing for mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 51(11), pages 5295-5304, July.
    4. Jiaying Gu & Roger Koenker & Stanislav Volgushev, 2017. "Testing for homogeneity in mixture models," CeMMAP working papers CWP39/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    5. Hung-Chia Chen & James J. Chen, 2016. "Hybrid Mixture Model for Subpopulation Identification," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 8(1), pages 28-42, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:110:y:2015:i:510:p:867-877. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.