IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v118y2013icp102-114.html
   My bibliography  Save this article

A simple method for obtaining the maximal correlation coefficient and related characterizations

Author

Listed:
  • Papadatos, Nickos
  • Xifara, Tatiana

Abstract

We provide a method that enables the simple calculation of the maximal correlation coefficient of a bivariate distribution, under suitable conditions. In particular, the method readily applies to known results on order statistics and records. As an application we provide a new characterization of the exponential distribution: Under a splitting model on independent identically distributed observations, it is the (unique, up to a location-scale transformation) parent distribution that maximizes the correlation coefficient between the records among two different branches of the splitting sequence.

Suggested Citation

  • Papadatos, Nickos & Xifara, Tatiana, 2013. "A simple method for obtaining the maximal correlation coefficient and related characterizations," Journal of Multivariate Analysis, Elsevier, vol. 118(C), pages 102-114.
  • Handle: RePEc:eee:jmvana:v:118:y:2013:i:c:p:102-114
    DOI: 10.1016/j.jmva.2013.03.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X13000444
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2013.03.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Angelo Koudou, 1998. "Lancaster bivariate probability distributions with Poisson, negative binomial and gamma margins," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 7(1), pages 95-110, June.
    2. Yu, Yaming, 2008. "On the maximal correlation coefficient," Statistics & Probability Letters, Elsevier, vol. 78(9), pages 1072-1075, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tamás F. Móri & Gábor J. Székely, 2019. "Four simple axioms of dependence measures," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(1), pages 1-16, January.
    2. Cuadras, Carles M. & Greenacre, Michael, 2022. "A short history of statistical association: From correlation to correspondence analysis to copulas," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    3. López Blázquez, F. & Salamanca Miño, B., 2014. "Maximal correlation in a non-diagonal case," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 265-278.
    4. Hugo Brango & Angie Guerrero & Humberto Llinás, 2024. "Marshall–Olkin Bivariate Weibull Model with Modified Singularity (MOBW- μ ): A Study of Its Properties and Correlation Structure," Mathematics, MDPI, vol. 12(14), pages 1-16, July.
    5. Fernando López-Blázquez & Begoña Salamanca-Miño, 2021. "Automatic differentiation and maximal correlation of order statistics from discrete parents," Computational Statistics, Springer, vol. 36(4), pages 2889-2915, December.
    6. Papadatos, Nickos, 2014. "Some counterexamples concerning maximal correlation and linear regression," Journal of Multivariate Analysis, Elsevier, vol. 126(C), pages 114-117.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hugo Brango & Angie Guerrero & Humberto Llinás, 2024. "Marshall–Olkin Bivariate Weibull Model with Modified Singularity (MOBW- μ ): A Study of Its Properties and Correlation Structure," Mathematics, MDPI, vol. 12(14), pages 1-16, July.
    2. Chen, Xiongzhi, 2020. "A strong law of large numbers for simultaneously testing parameters of Lancaster bivariate distributions," Statistics & Probability Letters, Elsevier, vol. 167(C).
    3. López Blázquez, F. & Salamanca Miño, B., 2014. "Maximal correlation in a non-diagonal case," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 265-278.
    4. Guo, Zijian & Zhang, Cun-Hui, 2022. "Extreme eigenvalues of nonlinear correlation matrices with applications to additive models," Stochastic Processes and their Applications, Elsevier, vol. 150(C), pages 1037-1058.
    5. Papadatos, Nickos, 2014. "Some counterexamples concerning maximal correlation and linear regression," Journal of Multivariate Analysis, Elsevier, vol. 126(C), pages 114-117.
    6. Huang, Qiming & Zhu, Yu, 2016. "Model-free sure screening via maximum correlation," Journal of Multivariate Analysis, Elsevier, vol. 148(C), pages 89-106.
    7. Pierre-Olivier Goffard & Stéphane Loisel & Denys Pommeret, 2017. "Polynomial Approximations for Bivariate Aggregate Claims Amount Probability Distributions," Methodology and Computing in Applied Probability, Springer, vol. 19(1), pages 151-174, March.
    8. Dueck, Johannes & Edelmann, Dominic & Richards, Donald, 2017. "Distance correlation coefficients for Lancaster distributions," Journal of Multivariate Analysis, Elsevier, vol. 154(C), pages 19-39.
    9. Fernando López-Blázquez & Begoña Salamanca-Miño, 2021. "Automatic differentiation and maximal correlation of order statistics from discrete parents," Computational Statistics, Springer, vol. 36(4), pages 2889-2915, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:118:y:2013:i:c:p:102-114. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.