IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v187y2022ics0047259x21001342.html
   My bibliography  Save this article

A robust linear mixed-effects model for longitudinal data using an innovative multivariate skew-Huber distribution

Author

Listed:
  • Mohammadi, Raziyeh
  • Kazemi, Iraj

Abstract

Conventional linear mixed-effects modeling is routinely challenging when the validity of necessary assumptions is suspicious. In particular, robustifying model fitting is appealing in the presence of potential outlying points. This paper introduces a robust regression methodology in a parametric setting by constructing a novel multivariate skew-Huber distribution for longitudinal data with heavy-tails and skewed structures. Unlike preceding studies, our model allows for jointly estimating the tuning parameter, which controls the impact of outliers, with all other parameters using an undemanding computational algorithm. Moreover, by promoting an unconstrained parameterization through the modified Cholesky decomposition, the estimate of variance–covariance components can be merely accessible. We also present a spline mixed model to account for the covariate effect. To highlight the usefulness of our methodology, we conducted a simulation study and analyzed a data set collected on type 2 diabetic patients with microalbuminuria over a 6-year prospective cohort study. Findings show that our proposed robust model leads to convincing conclusions in empirical studies.

Suggested Citation

  • Mohammadi, Raziyeh & Kazemi, Iraj, 2022. "A robust linear mixed-effects model for longitudinal data using an innovative multivariate skew-Huber distribution," Journal of Multivariate Analysis, Elsevier, vol. 187(C).
  • Handle: RePEc:eee:jmvana:v:187:y:2022:i:c:s0047259x21001342
    DOI: 10.1016/j.jmva.2021.104856
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X21001342
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2021.104856?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Crainiceanu, Ciprian M. & Ruppert, David & Wand, Matthew P., 2005. "Bayesian Analysis for Penalized Spline Regression Using WinBUGS," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 14(i14).
    2. Arellano-Valle, Reinaldo B. & Ferreira, Clécio S. & Genton, Marc G., 2018. "Scale and shape mixtures of multivariate skew-normal distributions," Journal of Multivariate Analysis, Elsevier, vol. 166(C), pages 98-110.
    3. Xiaoning Kang & Xinwei Deng & Kam‐Wah Tsui & Mohsen Pourahmadi, 2020. "On variable ordination of modified Cholesky decomposition for estimating time‐varying covariance matrices," International Statistical Review, International Statistical Institute, vol. 88(3), pages 616-641, December.
    4. Jara, Alejandro & Quintana, Fernando & San Marti­n, Ernesto, 2008. "Linear mixed models with skew-elliptical distributions: A Bayesian approach," Computational Statistics & Data Analysis, Elsevier, vol. 52(11), pages 5033-5045, July.
    5. Jacqmin-Gadda, Helene & Sibillot, Solenne & Proust, Cecile & Molina, Jean-Michel & Thiebaut, Rodolphe, 2007. "Robustness of the linear mixed model to misspecified error distribution," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 5142-5154, June.
    6. Mohsen Pourahmadi, 2007. "Cholesky Decompositions and Estimation of A Covariance Matrix: Orthogonality of Variance--Correlation Parameters," Biometrika, Biometrika Trust, vol. 94(4), pages 1006-1013.
    7. Fahrmeir, Ludwig & Kneib, Thomas, 2011. "Bayesian Smoothing and Regression for Longitudinal, Spatial and Event History Data," OUP Catalogue, Oxford University Press, number 9780199533022.
    8. Zhen Chen & David B. Dunson, 2003. "Random Effects Selection in Linear Mixed Models," Biometrics, The International Biometric Society, vol. 59(4), pages 762-769, December.
    9. M. P. Wand, 2003. "Smoothing and mixed models," Computational Statistics, Springer, vol. 18(2), pages 223-249, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lauren Hund & Jarvis T. Chen & Nancy Krieger & Brent A. Coull, 2012. "A Geostatistical Approach to Large-Scale Disease Mapping with Temporal Misalignment," Biometrics, The International Biometric Society, vol. 68(3), pages 849-858, September.
    2. Veerabhadran Baladandayuthapani & Bani K. Mallick & Mee Young Hong & Joanne R. Lupton & Nancy D. Turner & Raymond J. Carroll, 2008. "Bayesian Hierarchical Spatially Correlated Functional Data Analysis with Application to Colon Carcinogenesis," Biometrics, The International Biometric Society, vol. 64(1), pages 64-73, March.
    3. Daniels, M.J. & Pourahmadi, M., 2009. "Modeling covariance matrices via partial autocorrelations," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2352-2363, November.
    4. Chiara Bocci & Emilia Rocco, 2014. "Estimates for geographical domains through geoadditive models in presence of incomplete geographical information," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(2), pages 283-305, June.
    5. F. Y. Kuo & W. T. M. Dunsmuir & I. H. Sloan & M. P. Wand & R. S. Womersley, 2008. "Quasi-Monte Carlo for Highly Structured Generalised Response Models," Methodology and Computing in Applied Probability, Springer, vol. 10(2), pages 239-275, June.
    6. Lu, Fei & Xue, Liugen & Cai, Xiong, 2020. "GEE analysis in joint mean-covariance model for longitudinal data," Statistics & Probability Letters, Elsevier, vol. 160(C).
    7. Armagan, Artin & Dunson, David, 2011. "Sparse variational analysis of linear mixed models for large data sets," Statistics & Probability Letters, Elsevier, vol. 81(8), pages 1056-1062, August.
    8. Lee, Dae-Jin & Durbán, María, 2009. "P-spline anova-type interaction models for spatio-temporal smoothing," DES - Working Papers. Statistics and Econometrics. WS ws093312, Universidad Carlos III de Madrid. Departamento de Estadística.
    9. Alexandre Rodrigues & Peter Diggle & Renato Assuncao, 2010. "Semiparametric approach to point source modelling in epidemiology and criminology," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(3), pages 533-542, May.
    10. Erin E. Gabriel & Michael J. Daniels & M. Elizabeth Halloran, 2016. "Comparing biomarkers as trial level general surrogates," Biometrics, The International Biometric Society, vol. 72(4), pages 1046-1054, December.
    11. Baumann, Elias & Kern, Jana & Lessmann, Stefan, 2019. "Usage Continuance in Software-as-a-Service," IRTG 1792 Discussion Papers 2019-005, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    12. Xiong, Qian & Peng, Zuoxiang, 2020. "Asymptotic expansions of powered skew-normal extremes," Statistics & Probability Letters, Elsevier, vol. 158(C).
    13. Sarah Brown & Pulak Ghosh & Bhuvanesh Pareek & Karl Taylor, 2017. "Financial Hardship and Saving Behaviour: Bayesian Analysis of British Panel Data," Working Papers 2017011, The University of Sheffield, Department of Economics.
    14. Jagannadha Pawan Tamvada, 2015. "The Spatial Distribution of Self-Employment in India: Evidence from Semiparametric Geoadditive Models," Regional Studies, Taylor & Francis Journals, vol. 49(2), pages 300-322, February.
    15. Welham, S.J. & Thompson, R., 2009. "A note on bimodality in the log-likelihood function for penalized spline mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 920-931, February.
    16. Woojoo Lee & Hans‐Peter Piepho & Youngjo Lee, 2021. "Resolving the ambiguity of random‐effects models with singular precision matrix," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 75(4), pages 482-499, November.
    17. Michael Wegener & Göran Kauermann, 2017. "Forecasting in nonlinear univariate time series using penalized splines," Statistical Papers, Springer, vol. 58(3), pages 557-576, September.
    18. Benjamin R. Saville & Amy H. Herring, 2009. "Testing Random Effects in the Linear Mixed Model Using Approximate Bayes Factors," Biometrics, The International Biometric Society, vol. 65(2), pages 369-376, June.
    19. Tingting Zhou & Michael R. Elliott & Roderick J. A. Little, 2021. "Robust Causal Estimation from Observational Studies Using Penalized Spline of Propensity Score for Treatment Comparison," Stats, MDPI, vol. 4(2), pages 1-21, June.
    20. Strasak, Alexander M. & Umlauf, Nikolaus & Pfeiffer, Ruth M. & Lang, Stefan, 2011. "Comparing penalized splines and fractional polynomials for flexible modelling of the effects of continuous predictor variables," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1540-1551, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:187:y:2022:i:c:s0047259x21001342. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.