IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v81y2011i12p1920-1928.html
   My bibliography  Save this article

Consistency of spike and slab regression

Author

Listed:
  • Ishwaran, Hemant
  • Sunil Rao, J.

Abstract

Spike and slab models are a popular and attractive variable selection approach in regression settings. Applications for these models have blossomed over the last decade and they are increasingly being used in challenging problems. At the same time, theory for spike and slab models has not kept pace with the applications. There are many gaps in what we know about their theoretical properties. An important property known to hold in these models is selective shrinkage: a unique property whereby the posterior mean is shrunk toward zero for non-informative variables only. This property has been shown to hold under orthogonality for continuous priors under the modified class of rescaled spike and slab models. In this paper, we extend this result to the general case and prove an oracle property for the posterior mean under a discrete two-component prior. An immediate consequence is that a strong selective shrinkage property holds. Interestingly, the conditions needed for our result to hold in the non-orthogonal setting are more stringent than in the orthogonal case and amount to a type of enforced sparsity condition that must be met by the prior.

Suggested Citation

  • Ishwaran, Hemant & Sunil Rao, J., 2011. "Consistency of spike and slab regression," Statistics & Probability Letters, Elsevier, vol. 81(12), pages 1920-1928.
  • Handle: RePEc:eee:stapro:v:81:y:2011:i:12:p:1920-1928
    DOI: 10.1016/j.spl.2011.08.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715211002690
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2011.08.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ishwaran H. & Rao J.S., 2003. "Detecting Differentially Expressed Genes in Microarrays Using Bayesian Model Selection," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 438-455, January.
    2. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    3. Ishwaran, Hemant & Rao, J. Sunil, 2005. "Spike and Slab Gene Selection for Multigroup Microarray Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 764-780, September.
    4. Park, Trevor & Casella, George, 2008. "The Bayesian Lasso," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 681-686, June.
    5. Geweke, John F & Meese, Richard, 1981. "Estimating Regression Models of Finite but Unknown Order," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 22(1), pages 55-70, February.
    6. P. J. Brown & M. Vannucci & T. Fearn, 1998. "Multivariate Bayesian variable selection and prediction," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(3), pages 627-641.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Jia & Cai, Xizhen & Li, Runze, 2021. "Variable selection for partially linear models via Bayesian subset modeling with diffusing prior," Journal of Multivariate Analysis, Elsevier, vol. 183(C).
    2. Kai Yang & Xue Ding & Xiaohui Yuan, 2022. "Bayesian empirical likelihood inference and order shrinkage for autoregressive models," Statistical Papers, Springer, vol. 63(1), pages 97-121, February.
    3. Shi, Guiling & Lim, Chae Young & Maiti, Tapabrata, 2019. "Model selection using mass-nonlocal prior," Statistics & Probability Letters, Elsevier, vol. 147(C), pages 36-44.
    4. Jona Lasinio, Giovanna & Pollice, Alessio & Fano, Elisa Anna, 2019. "Generalized biodiversity assessment by Bayesian nested random effects models with spyke-and-slab priors," Statistics & Probability Letters, Elsevier, vol. 144(C), pages 52-56.
    5. Li, Cheng & Jiang, Wenxin, 2016. "On oracle property and asymptotic validity of Bayesian generalized method of moments," Journal of Multivariate Analysis, Elsevier, vol. 145(C), pages 132-147.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bernardi, Mauro & Costola, Michele, 2019. "High-dimensional sparse financial networks through a regularised regression model," SAFE Working Paper Series 244, Leibniz Institute for Financial Research SAFE.
    2. Oguzhan Cepni & I. Ethem Guney & Norman R. Swanson, 2020. "Forecasting and nowcasting emerging market GDP growth rates: The role of latent global economic policy uncertainty and macroeconomic data surprise factors," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(1), pages 18-36, January.
    3. Lee Anthony & Caron Francois & Doucet Arnaud & Holmes Chris, 2012. "Bayesian Sparsity-Path-Analysis of Genetic Association Signal using Generalized t Priors," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(2), pages 1-31, January.
    4. Yu-Zhu Tian & Man-Lai Tang & Wai-Sum Chan & Mao-Zai Tian, 2021. "Bayesian bridge-randomized penalized quantile regression for ordinal longitudinal data, with application to firm’s bond ratings," Computational Statistics, Springer, vol. 36(2), pages 1289-1319, June.
    5. Lee Woojoo & Lee Donghwan & Lee Youngjo & Pawitan Yudi, 2011. "Sparse Canonical Covariance Analysis for High-throughput Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-24, July.
    6. Dufays, Arnaud & Rombouts, Jeroen V.K., 2020. "Relevant parameter changes in structural break models," Journal of Econometrics, Elsevier, vol. 217(1), pages 46-78.
    7. Lee, Kuo-Jung & Chen, Ray-Bing & Wu, Ying Nian, 2016. "Bayesian variable selection for finite mixture model of linear regressions," Computational Statistics & Data Analysis, Elsevier, vol. 95(C), pages 1-16.
    8. Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2023. "Machine learning advances for time series forecasting," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 76-111, February.
    9. Philip Kostov & Thankom Arun & Samuel Annim, 2014. "Financial Services to the Unbanked: the case of the Mzansi intervention in South Africa," Contemporary Economics, University of Economics and Human Sciences in Warsaw., vol. 8(2), June.
    10. De Luca, Giuseppe & Magnus, Jan R. & Peracchi, Franco, 2018. "Weighted-average least squares estimation of generalized linear models," Journal of Econometrics, Elsevier, vol. 204(1), pages 1-17.
    11. Ruggieri, Eric & Lawrence, Charles E., 2012. "On efficient calculations for Bayesian variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1319-1332.
    12. Olivier Collignon & Jeongseop Han & Hyungmi An & Seungyoung Oh & Youngjo Lee, 2018. "Comparison of the modified unbounded penalty and the LASSO to select predictive genes of response to chemotherapy in breast cancer," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-15, October.
    13. Dazard, Jean-Eudes & Sunil Rao, J., 2012. "Joint adaptive mean–variance regularization and variance stabilization of high dimensional data," Computational Statistics & Data Analysis, Elsevier, vol. 56(7), pages 2317-2333.
    14. Posch, Konstantin & Arbeiter, Maximilian & Pilz, Juergen, 2020. "A novel Bayesian approach for variable selection in linear regression models," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    15. Tathagata Basu & Matthias C. M. Troffaes & Jochen Einbeck, 2023. "A Robust Bayesian Analysis of Variable Selection under Prior Ignorance," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 1014-1057, February.
    16. Tanin Sirimongkolkasem & Reza Drikvandi, 2019. "On Regularisation Methods for Analysis of High Dimensional Data," Annals of Data Science, Springer, vol. 6(4), pages 737-763, December.
    17. Mogliani, Matteo & Simoni, Anna, 2021. "Bayesian MIDAS penalized regressions: Estimation, selection, and prediction," Journal of Econometrics, Elsevier, vol. 222(1), pages 833-860.
    18. van Erp, Sara & Oberski, Daniel L. & Mulder, Joris, 2018. "Shrinkage priors for Bayesian penalized regression," OSF Preprints cg8fq, Center for Open Science.
    19. Fabian Scheipl & Thomas Kneib & Ludwig Fahrmeir, 2013. "Penalized likelihood and Bayesian function selection in regression models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 97(4), pages 349-385, October.
    20. Kshitij Khare & Malay Ghosh, 2022. "MCMC Convergence for Global-Local Shrinkage Priors," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 20(1), pages 211-234, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:81:y:2011:i:12:p:1920-1928. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.