IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2007.03911.html
   My bibliography  Save this paper

Max-sum tests for cross-sectional dependence of high-demensional panel data

Author

Listed:
  • Long Feng
  • Tiefeng Jiang
  • Binghui Liu
  • Wei Xiong

Abstract

We consider a testing problem for cross-sectional dependence for high-dimensional panel data, where the number of cross-sectional units is potentially much larger than the number of observations. The cross-sectional dependence is described through a linear regression model. We study three tests named the sum test, the max test and the max-sum test, where the latter two are new. The sum test is initially proposed by Breusch and Pagan (1980). We design the max and sum tests for sparse and non-sparse residuals in the linear regressions, respectively.And the max-sum test is devised to compromise both situations on the residuals. Indeed, our simulation shows that the max-sum test outperforms the previous two tests. This makes the max-sum test very useful in practice where sparsity or not for a set of data is usually vague. Towards the theoretical analysis of the three tests, we have settled two conjectures regarding the sum of squares of sample correlation coefficients asked by Pesaran (2004 and 2008). In addition, we establish the asymptotic theory for maxima of sample correlations coefficients appeared in the linear regression model for panel data, which is also the first successful attempt to our knowledge. To study the max-sum test, we create a novel method to show asymptotic independence between maxima and sums of dependent random variables. We expect the method itself is useful for other problems of this nature. Finally, an extensive simulation study as well as a case study are carried out. They demonstrate advantages of our proposed methods in terms of both empirical powers and robustness for residuals regardless of sparsity or not.

Suggested Citation

  • Long Feng & Tiefeng Jiang & Binghui Liu & Wei Xiong, 2020. "Max-sum tests for cross-sectional dependence of high-demensional panel data," Papers 2007.03911, arXiv.org.
  • Handle: RePEc:arx:papers:2007.03911
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2007.03911
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pesaran, M. Hashem, 2015. "Time Series and Panel Data Econometrics," OUP Catalogue, Oxford University Press, number 9780198759980.
    2. Tony Cai, T. & Jiang, Tiefeng, 2012. "Phase transition in limiting distributions of coherence of high-dimensional random matrices," Journal of Multivariate Analysis, Elsevier, vol. 107(C), pages 24-39.
    3. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    4. Vasilis Sarafidis & Tom Wansbeek, 2012. "Cross-Sectional Dependence in Panel Data Analysis," Econometric Reviews, Taylor & Francis Journals, vol. 31(5), pages 483-531, September.
    5. Cai, Tony & Liu, Weidong, 2011. "Adaptive Thresholding for Sparse Covariance Matrix Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 672-684.
    6. Jeffrey M Wooldridge, 2010. "Econometric Analysis of Cross Section and Panel Data," MIT Press Books, The MIT Press, edition 2, volume 1, number 0262232588, December.
    7. T. S. Breusch & A. R. Pagan, 1980. "The Lagrange Multiplier Test and its Applications to Model Specification in Econometrics," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 47(1), pages 239-253.
    8. M. Hashem Pesaran & Aman Ullah & Takashi Yamagata, 2008. "A bias-adjusted LM test of error cross-section independence," Econometrics Journal, Royal Economic Society, vol. 11(1), pages 105-127, March.
    9. M. Hashem Pesaran, 2021. "General diagnostic tests for cross-sectional dependence in panels," Empirical Economics, Springer, vol. 60(1), pages 13-50, January.
    10. Cheng Hsiao & M. Hashem Pesaran & Andreas Pick, 2012. "Diagnostic Tests of Cross‐section Independence for Limited Dependent Variable Panel Data Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 74(2), pages 253-277, April.
    11. Cai, T. Tony & Zhang, Anru, 2016. "Inference for high-dimensional differential correlation matrices," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 107-126.
    12. M. Hashem Pesaran, 2015. "Testing Weak Cross-Sectional Dependence in Large Panels," Econometric Reviews, Taylor & Francis Journals, vol. 34(6-10), pages 1089-1117, December.
    13. Francesco Moscone & Elisa Tosetti, 2009. "A Review And Comparison Of Tests Of Cross‐Section Independence In Panels," Journal of Economic Surveys, Wiley Blackwell, vol. 23(3), pages 528-561, July.
    14. Gongjun Xu & Lifeng Lin & Peng Wei & Wei Pan, 2016. "An adaptive two-sample test for high-dimensional means," Biometrika, Biometrika Trust, vol. 103(3), pages 609-624.
    15. Tony Cai & Weidong Liu & Yin Xia, 2013. "Two-Sample Covariance Matrix Testing and Support Recovery in High-Dimensional and Sparse Settings," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(501), pages 265-277, March.
    16. T. Tony Cai & Weidong Liu & Yin Xia, 2014. "Two-sample test of high dimensional means under dependence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(2), pages 349-372, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexander Chudik & M. Hashem Pesaran, 2013. "Large panel data models with cross-sectional dependence: a survey," Globalization Institute Working Papers 153, Federal Reserve Bank of Dallas.
    2. Feng, Long & Zhao, Ping & Ding, Yanling & Liu, Binghui, 2021. "Rank-based tests of cross-sectional dependence in panel data models," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
    3. M. Hashem Pesaran, 2015. "Testing Weak Cross-Sectional Dependence in Large Panels," Econometric Reviews, Taylor & Francis Journals, vol. 34(6-10), pages 1089-1117, December.
    4. Badi H. Baltagi & Chihwa Kao & Bin Peng, 2016. "Testing Cross-Sectional Correlation in Large Panel Data Models with Serial Correlation," Econometrics, MDPI, vol. 4(4), pages 1-24, November.
    5. Baltagi, Badi H. & Feng, Qu & Kao, Chihwa, 2012. "A Lagrange Multiplier test for cross-sectional dependence in a fixed effects panel data model," Journal of Econometrics, Elsevier, vol. 170(1), pages 164-177.
    6. Halunga, Andreea G. & Orme, Chris D. & Yamagata, Takashi, 2017. "A heteroskedasticity robust Breusch–Pagan test for Contemporaneous correlation in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 198(2), pages 209-230.
    7. Chen, Hongrui, 2023. "Energy innovations, natural resource abundance, urbanization, and environmental sustainability in the post-covid era. Does environmental regulation matter?," Resources Policy, Elsevier, vol. 85(PB).
    8. Muhammad Shafiullah & Vassilios G. Papavassiliou & Muhammad Shahbaz, 2021. "Is There an Extended Education-Based Environmental Kuznets Curve? An Analysis of U.S. States," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 80(4), pages 795-819, December.
    9. Zhenhong Huang & Zhaoyuan Li & Jianfeng Yao, 2023. "Unified and robust Lagrange multiplier type tests for cross-sectional independence in large panel data models," Papers 2302.14387, arXiv.org.
    10. Baltagi, Badi H. & Feng, Qu & Kao, Chihwa, 2016. "Estimation of heterogeneous panels with structural breaks," Journal of Econometrics, Elsevier, vol. 191(1), pages 176-195.
    11. Schneider, Nicolas & Strielkowski, Wadim, 2023. "Modelling the unit root properties of electricity data—A general note on time-domain applications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 618(C).
    12. Muhammad Shafiullah & Luke Emeka Okafor & Usman Khalid, 2019. "Determinants of international tourism demand: Evidence from Australian states and territories," Tourism Economics, , vol. 25(2), pages 274-296, March.
    13. Ugur Korkut Pata & Banu Tanriover, 2023. "Is the Load Capacity Curve Hypothesis Valid for the Top Ten Tourism Destinations?," Sustainability, MDPI, vol. 15(2), pages 1-15, January.
    14. Philip Kerner & Torben Klarl & Tobias Wendler, 2021. "Green Technologies, Environmental Policy and Regional Growth," Bremen Papers on Economics & Innovation 2104, University of Bremen, Faculty of Business Studies and Economics.
    15. Badi H. Baltagi & Chihwa Kao & Fa Wang, 2017. "Asymptotic power of the sphericity test under weak and strong factors in a fixed effects panel data model," Econometric Reviews, Taylor & Francis Journals, vol. 36(6-9), pages 853-882, October.
    16. Christopher A. Hartwell & Anna P. Malinowska, 2018. "Firm-Level and Institutional Determinants of Corporate Capital Structure in Poland: New Evidence from the Warsaw Stock Exchange," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 68(2), pages 120-143, April.
    17. Yu, Xiufan & Yao, Jiawei & Xue, Lingzhou, 2024. "Power enhancement for testing multi-factor asset pricing models via Fisher’s method," Journal of Econometrics, Elsevier, vol. 239(2).
    18. Lu, Yin & Tian, Tian & Ge, Chen, 2023. "Asymmetric effects of renewable energy, fintech development, natural resources, and environmental regulations on the climate change in the post-covid era," Resources Policy, Elsevier, vol. 85(PB).
    19. Auteri, Monica & Mele, Marco & Ruble, Isabella & Magazzino, Cosimo, 2024. "The double sustainability: The link between government debt and renewable energy," The Journal of Economic Asymmetries, Elsevier, vol. 29(C).
    20. Michael Appiah & Bright Akwasi Gyamfi & Tomiwa Sunday Adebayo & Festus Victor Bekun, 2023. "Do financial development, foreign direct investment, and economic growth enhance industrial development? Fresh evidence from Sub-Sahara African countries," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 22(2), pages 203-227, May.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2007.03911. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.