IDEAS home Printed from https://ideas.repec.org/a/bla/obuest/v82y2020i5p1198-1216.html
   My bibliography  Save this article

Rank‐based Tests for Cross‐sectional Dependence in Large (N, T) Fixed Effects Panel Data Models

Author

Listed:
  • Long Feng
  • Yanling Ding
  • Binghui Liu

Abstract

Most existing methods for testing cross‐sectional dependence in fixed effects panel data models are actually conducting tests for cross‐sectional uncorrelation, which are not robust to departures of normality of the error distributions as well as nonlinear cross‐sectional dependence. To this end, we construct two rank‐based tests for (static and dynamic) fixed effects panel data models, based on two very popular rank correlations, that is, Kendall's tau and Bergsma–Dassios’ τ*, respectively, and derive their asymptotic distributions under the null hypothesis. Monte Carlo simulations demonstrate applicability of these rank‐based tests in large (N,T) case, and also the robustness to departures of normality of the error distributions and nonlinear cross‐sectional dependence.

Suggested Citation

  • Long Feng & Yanling Ding & Binghui Liu, 2020. "Rank‐based Tests for Cross‐sectional Dependence in Large (N, T) Fixed Effects Panel Data Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 82(5), pages 1198-1216, October.
  • Handle: RePEc:bla:obuest:v:82:y:2020:i:5:p:1198-1216
    DOI: 10.1111/obes.12378
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/obes.12378
    Download Restriction: no

    File URL: https://libkey.io/10.1111/obes.12378?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jinyong Hahn & Guido Kuersteiner, 2002. "Asymptotically Unbiased Inference for a Dynamic Panel Model with Fixed Effects when Both "n" and "T" Are Large," Econometrica, Econometric Society, vol. 70(4), pages 1639-1657, July.
    2. Cai, Zongwu & Li, Qi & Park, Joon Y., 2009. "Functional-coefficient models for nonstationary time series data," Journal of Econometrics, Elsevier, vol. 148(2), pages 101-113, February.
    3. Peter C. B. Phillips & Hyungsik R. Moon, 1999. "Linear Regression Limit Theory for Nonstationary Panel Data," Econometrica, Econometric Society, vol. 67(5), pages 1057-1112, September.
    4. Baltagi, Badi H. & Feng, Qu & Kao, Chihwa, 2012. "A Lagrange Multiplier test for cross-sectional dependence in a fixed effects panel data model," Journal of Econometrics, Elsevier, vol. 170(1), pages 164-177.
    5. Srivastava, Muni S. & Katayama, Shota & Kano, Yutaka, 2013. "A two sample test in high dimensional data," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 349-358.
    6. Luca Weihs & Mathias Drton & Dennis Leung, 2016. "Efficient computation of the Bergsma–Dassios sign covariance," Computational Statistics, Springer, vol. 31(1), pages 315-328, March.
    7. T. S. Breusch & A. R. Pagan, 1980. "The Lagrange Multiplier Test and its Applications to Model Specification in Econometrics," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 47(1), pages 239-253.
    8. Wang, Guanghui & Zou, Changliang & Wang, Zhaojun, 2013. "A necessary test for complete independence in high dimensions using rank-correlations," Journal of Multivariate Analysis, Elsevier, vol. 121(C), pages 224-232.
    9. Nickell, Stephen J, 1981. "Biases in Dynamic Models with Fixed Effects," Econometrica, Econometric Society, vol. 49(6), pages 1417-1426, November.
    10. Mao, Guangyu, 2018. "Testing independence in high dimensions using Kendall’s tau," Computational Statistics & Data Analysis, Elsevier, vol. 117(C), pages 128-137.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Hongfei & Liu, Binghui & Feng, Long & Ma, Yanyuan, 2024. "Rank-based max-sum tests for mutual independence of high-dimensional random vectors," Journal of Econometrics, Elsevier, vol. 238(1).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feng, Long & Zhao, Ping & Ding, Yanling & Liu, Binghui, 2021. "Rank-based tests of cross-sectional dependence in panel data models," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
    2. Baltagi, Badi H. & Feng, Qu & Kao, Chihwa, 2012. "A Lagrange Multiplier test for cross-sectional dependence in a fixed effects panel data model," Journal of Econometrics, Elsevier, vol. 170(1), pages 164-177.
    3. Lee, Yoon-Jin & Okui, Ryo & Shintani, Mototsugu, 2018. "Asymptotic inference for dynamic panel estimators of infinite order autoregressive processes," Journal of Econometrics, Elsevier, vol. 204(2), pages 147-158.
    4. Hyungsik R. Moon & Peter C.B. Phillips, 1999. "Maximum Likelihood Estimation in Panels with Incidental Trends," Cowles Foundation Discussion Papers 1246, Cowles Foundation for Research in Economics, Yale University.
    5. Smith, Simon C. & Timmermann, Allan & Zhu, Yinchu, 2019. "Variable selection in panel models with breaks," Journal of Econometrics, Elsevier, vol. 212(1), pages 323-344.
    6. Arturas Juodis & Simon Reese, 2018. "The Incidental Parameters Problem in Testing for Remaining Cross-section Correlation," Papers 1810.03715, arXiv.org, revised Feb 2021.
    7. Baltagi, Badi H. & Feng, Qu & Kao, Chihwa, 2016. "Estimation of heterogeneous panels with structural breaks," Journal of Econometrics, Elsevier, vol. 191(1), pages 176-195.
    8. Weidner, Martin & Zylkin, Thomas, 2021. "Bias and consistency in three-way gravity models," Journal of International Economics, Elsevier, vol. 132(C).
    9. Aldama, Pierre & Creel, Jérôme, 2022. "Real-time fiscal policy responses in the OECD from 1997 to 2018: Procyclical but sustainable?," European Journal of Political Economy, Elsevier, vol. 73(C).
    10. Michael Appiah & Mingxing Li & Stephen Taiwo Onifade & Bright Akwasi Gyamfi, 2024. "Investigating institutional quality and carbon mitigation drive in Sub-Saharan Africa: Are growth levels, energy use, population, and industrialization consequential factors?," Energy & Environment, , vol. 35(4), pages 2031-2057, June.
    11. Ivan Fernandez-Val & Martin Weidner, 2015. "Individual and time effects in nonlinear panel models with large N , T," CeMMAP working papers 17/15, Institute for Fiscal Studies.
    12. Chengwang Liao & Ziwei Mei & Zhentao Shi, 2024. "Nickell Meets Stambaugh: A Tale of Two Biases in Panel Predictive Regressions," Papers 2410.09825, arXiv.org.
    13. Ivan Fernandez-Val, 2005. "Estimation of Structural Parameters and Marginal Effects in Binary Choice Panel Data Models with Fixed Effects," Boston University - Department of Economics - Working Papers Series WP2005-38, Boston University - Department of Economics.
    14. Hyungsik Roger Moon & Peter C. B. Phillips, 2004. "GMM Estimation of Autoregressive Roots Near Unity with Panel Data," Econometrica, Econometric Society, vol. 72(2), pages 467-522, March.
    15. Fernández-Val, Iván & Vella, Francis, 2011. "Bias corrections for two-step fixed effects panel data estimators," Journal of Econometrics, Elsevier, vol. 163(2), pages 144-162, August.
    16. Mayer, Alexander, 2022. "On the local power of some tests of strict exogeneity in linear fixed effects models," Econometrics and Statistics, Elsevier, vol. 24(C), pages 49-74.
    17. Muhammad Azam & Zia Ur Rehman & Yusnidah Ibrahim, 2022. "Causal nexus in industrialization, urbanization, trade openness, and carbon emissions: empirical evidence from OPEC economies," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(12), pages 13990-14010, December.
    18. Dhaene, Geert & Jochmans, Koen, 2016. "Bias-corrected estimation of panel vector autoregressions," Economics Letters, Elsevier, vol. 145(C), pages 98-103.
    19. M. Hashem Pesaran, 2021. "General diagnostic tests for cross-sectional dependence in panels," Empirical Economics, Springer, vol. 60(1), pages 13-50, January.
    20. Badi H. Baltagi, 2021. "Dynamic Panel Data Models," Springer Texts in Business and Economics, in: Econometric Analysis of Panel Data, edition 6, chapter 0, pages 187-228, Springer.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:obuest:v:82:y:2020:i:5:p:1198-1216. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/sfeixuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.