Robustness and asymptotics of the projection median
Author
Abstract
Suggested Citation
DOI: 10.1016/j.jmva.2020.104678
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Robert Serfling, 2010. "Equivariance and invariance properties of multivariate quantile and related functions, and the role of standardisation," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(7), pages 915-936.
- Ramsay, Kelly & Durocher, Stéphane & Leblanc, Alexandre, 2019. "Integrated rank-weighted depth," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 51-69.
- Xin Dang & Robert Serfling & Weihua Zhou, 2009. "Influence functions of some depth functions, and application to depth-weighted L-statistics," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(1), pages 49-66.
- Cuevas, Antonio & Fraiman, Ricardo, 2009. "On depth measures and dual statistics. A methodology for dealing with general data," Journal of Multivariate Analysis, Elsevier, vol. 100(4), pages 753-766, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ramsay, Kelly & Durocher, Stéphane & Leblanc, Alexandre, 2019. "Integrated rank-weighted depth," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 51-69.
- Dai, Wenlin & Genton, Marc G., 2019. "Directional outlyingness for multivariate functional data," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 50-65.
- repec:cte:wsrepe:ws120906 is not listed on IDEAS
- Nieto-Reyes, Alicia & Battey, Heather, 2021. "A topologically valid construction of depth for functional data," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
- Fraiman, Ricardo & Moreno, Leonardo & Ransford, Thomas, 2023. "A Cramér–Wold theorem for elliptical distributions," Journal of Multivariate Analysis, Elsevier, vol. 196(C).
- Nagy, Stanislav & Ferraty, Frédéric, 2019. "Data depth for measurable noisy random functions," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 95-114.
- Ricardo Fraiman & Leonardo Moreno & Sebastian Vallejo, 2017. "Some hypothesis tests based on random projection," Computational Statistics, Springer, vol. 32(3), pages 1165-1189, September.
- J. Cuesta-Albertos & M. Febrero-Bande, 2010. "A simple multiway ANOVA for functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(3), pages 537-557, November.
- Serfling, Robert & Wijesuriya, Uditha, 2017. "Depth-based nonparametric description of functional data, with emphasis on use of spatial depth," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 24-45.
- Youngseok Choi & Habin Lee & Zahir Irani, 2018. "Big data-driven fuzzy cognitive map for prioritising IT service procurement in the public sector," Annals of Operations Research, Springer, vol. 270(1), pages 75-104, November.
- Han Shang, 2014.
"A survey of functional principal component analysis,"
AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 98(2), pages 121-142, April.
- Han Lin Shang, 2011. "A survey of functional principal component analysis," Monash Econometrics and Business Statistics Working Papers 6/11, Monash University, Department of Econometrics and Business Statistics.
- Fraiman, Ricardo & Svarc, Marcela, 2013. "Resistant estimates for high dimensional and functional data based on random projections," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 326-338.
- Fraiman, Ricardo & Pateiro-López, Beatriz, 2012. "Quantiles for finite and infinite dimensional data," Journal of Multivariate Analysis, Elsevier, vol. 108(C), pages 1-14.
- Anirvan Chakraborty & Probal Chaudhuri, 2014. "On data depth in infinite dimensional spaces," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(2), pages 303-324, April.
- Gijbels, Irène & Nagy, Stanislav, 2015. "Consistency of non-integrated depths for functional data," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 259-282.
- Dominicy, Yves & Heikkilä, Matias & Ilmonen, Pauliina & Veredas, David, 2020. "Flexible multivariate Hill estimators," Journal of Econometrics, Elsevier, vol. 217(2), pages 398-410.
- Carlo Sguera & Pedro Galeano & Rosa Lillo, 2014. "Spatial depth-based classification for functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(4), pages 725-750, December.
- Llop, P. & Forzani, L. & Fraiman, R., 2011. "On local times, density estimation and supervised classification from functional data," Journal of Multivariate Analysis, Elsevier, vol. 102(1), pages 73-86, January.
- Yi He & John H. J. Einmahl, 2017.
"Estimation of extreme depth-based quantile regions,"
Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(2), pages 449-461, March.
- He, Y. & Einmahl, J.H.J., 2014. "Estimation of Extreme Depth-Based Quantile Regions," Other publications TiSEM d6529c8a-8865-4c03-a064-a, Tilburg University, School of Economics and Management.
- He, Y. & Einmahl, J.H.J., 2014. "Estimation of Extreme Depth-Based Quantile Regions," Discussion Paper 2014-035, Tilburg University, Center for Economic Research.
- Fraiman, Ricardo & Gamboa, Fabrice & Moreno, Leonardo, 2019. "Connecting pairwise geodesic spheres by depth: DCOPS," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 81-94.
- Stanislav Nagy & Houyem Demni & Davide Buttarazzi & Giovanni C. Porzio, 2024. "Theory of angular depth for classification of directional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 18(3), pages 627-662, September.
More about this item
Keywords
Asymptotic distribution; Influence function; Multivariate median;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:181:y:2021:i:c:s0047259x20302591. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.