IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v177y2020ics0047259x19300831.html
   My bibliography  Save this article

Bivariate distributions with ordered marginals

Author

Listed:
  • Arnold, Sebastian
  • Molchanov, Ilya
  • Ziegel, Johanna F.

Abstract

This paper provides a characterization of all possible dependency structures between two stochastically ordered random variables. The answer is given in terms of copulas that are compatible with the stochastic order and the marginal distributions. The extremal values for Kendall’s τ and Spearman’s ρ for all these copulas are given in closed form. We also find an explicit form for the joint distribution with the maximal entropy. A multivariate extension and a generalization to random elements in partially ordered spaces are also provided.

Suggested Citation

  • Arnold, Sebastian & Molchanov, Ilya & Ziegel, Johanna F., 2020. "Bivariate distributions with ordered marginals," Journal of Multivariate Analysis, Elsevier, vol. 177(C).
  • Handle: RePEc:eee:jmvana:v:177:y:2020:i:c:s0047259x19300831
    DOI: 10.1016/j.jmva.2019.104585
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X19300831
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2019.104585?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paul Embrechts & Marius Hofert, 2013. "A note on generalized inverses," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 77(3), pages 423-432, June.
    2. Nelsen, Roger B. & Molina, José Juan Quesada & Lallena, José Antonio Rodríguez & Flores, Manuel Úbeda, 2004. "Best-possible bounds on sets of bivariate distribution functions," Journal of Multivariate Analysis, Elsevier, vol. 90(2), pages 348-358, August.
    3. Navarro, Jorge & Spizzichino, Fabio, 2010. "On the relationships between copulas of order statistics and marginal distributions," Statistics & Probability Letters, Elsevier, vol. 80(5-6), pages 473-479, March.
    4. Dietz, Markus & Fuchs, Sebastian & Schmidt, Klaus D., 2016. "On order statistics and their copulas," Statistics & Probability Letters, Elsevier, vol. 117(C), pages 165-172.
    5. Lebrun, Régis & Dutfoy, Anne, 2014. "Copulas for order statistics with prescribed margins," Journal of Multivariate Analysis, Elsevier, vol. 128(C), pages 120-133.
    6. Butucea, Cristina & Delmas, Jean-François & Dutfoy, Anne & Fischer, Richard, 2015. "Maximum entropy copula with given diagonal section," Journal of Multivariate Analysis, Elsevier, vol. 137(C), pages 61-81.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Yuyu & Lin, Liyuan & Wang, Ruodu, 2022. "Risk aggregation under dependence uncertainty and an order constraint," Insurance: Mathematics and Economics, Elsevier, vol. 102(C), pages 169-187.
    2. Yuyu Chen & Liyuan Lin & Ruodu Wang, 2021. "Risk Aggregation under Dependence Uncertainty and an Order Constraint," Papers 2104.07718, arXiv.org, revised Oct 2021.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fuchs, Sebastian & Schmidt, Klaus D., 2021. "On order statistics and Kendall’s tau," Statistics & Probability Letters, Elsevier, vol. 169(C).
    2. Fabrizio Durante & Erich Klement & Carlo Sempi & Manuel Úbeda-Flores, 2010. "Measures of non-exchangeability for bivariate random vectors," Statistical Papers, Springer, vol. 51(3), pages 687-699, September.
    3. Georg Menz & Moritz Vo{ss}, 2023. "Aggregation of financial markets," Papers 2309.04116, arXiv.org, revised Sep 2024.
    4. Silvana M. Pesenti & Pietro Millossovich & Andreas Tsanakas, 2023. "Differential Quantile-Based Sensitivity in Discontinuous Models," Papers 2310.06151, arXiv.org, revised Oct 2024.
    5. Azam Dehgani & Ali Dolati & Manuel Úbeda-Flores, 2013. "Measures of radial asymmetry for bivariate random vectors," Statistical Papers, Springer, vol. 54(2), pages 271-286, May.
    6. Gupta, Nitin & Misra, Neeraj & Kumar, Somesh, 2015. "Stochastic comparisons of residual lifetimes and inactivity times of coherent systems with dependent identically distributed components," European Journal of Operational Research, Elsevier, vol. 240(2), pages 425-430.
    7. Kaas, Rob & Laeven, Roger J.A. & Nelsen, Roger B., 2009. "Worst VaR scenarios with given marginals and measures of association," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 146-158, April.
    8. Hofert Marius & Memartoluie Amir & Saunders David & Wirjanto Tony, 2017. "Improved algorithms for computing worst Value-at-Risk," Statistics & Risk Modeling, De Gruyter, vol. 34(1-2), pages 13-31, June.
    9. Basei, Matteo & Ferrari, Giorgio & Rodosthenous, Neofytos, 2023. "Uncertainty over Uncertainty in Environmental Policy Adoption: Bayesian Learning of Unpredictable Socioeconomic Costs," Center for Mathematical Economics Working Papers 677, Center for Mathematical Economics, Bielefeld University.
    10. Butucea, Cristina & Delmas, Jean-François & Dutfoy, Anne & Fischer, Richard, 2015. "Maximum entropy copula with given diagonal section," Journal of Multivariate Analysis, Elsevier, vol. 137(C), pages 61-81.
    11. Matthias Scherer & Henrik Sloot, 2019. "Exogenous shock models: analytical characterization and probabilistic construction," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(8), pages 931-959, November.
    12. Oertel Frank, 2015. "An analysis of the Rüschendorf transform - with a view towards Sklar’s Theorem," Dependence Modeling, De Gruyter, vol. 3(1), pages 1-13, September.
    13. Jianxi Su & Edward Furman, 2016. "Multiple risk factor dependence structures: Copulas and related properties," Papers 1610.02126, arXiv.org.
    14. Bezgina, E. & Burkschat, M., 2019. "On total positivity of exchangeable random variables obtained by symmetrization, with applications to failure-dependent lifetimes," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 95-109.
    15. Sloot Henrik, 2020. "The deFinetti representation of generalised Marshall–Olkin sequences," Dependence Modeling, De Gruyter, vol. 8(1), pages 107-118, January.
    16. Yanqin Fan & Carlos A. Manzanares, 2017. "Partial identification of average treatment effects on the treated through difference-in-differences," Econometric Reviews, Taylor & Francis Journals, vol. 36(6-9), pages 1057-1080, October.
    17. Anders Bredahl Kock & David Preinerstorfer & Bezirgen Veliyev, 2022. "Functional Sequential Treatment Allocation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(539), pages 1311-1323, September.
    18. Dietz, Markus & Fuchs, Sebastian & Schmidt, Klaus D., 2016. "On order statistics and their copulas," Statistics & Probability Letters, Elsevier, vol. 117(C), pages 165-172.
    19. M. Burzoni & I. Peri & C. M. Ruffo, 2017. "On the properties of the Lambda value at risk: robustness, elicitability and consistency," Quantitative Finance, Taylor & Francis Journals, vol. 17(11), pages 1735-1743, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:177:y:2020:i:c:s0047259x19300831. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.