IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v204y2024ics0167715223001682.html
   My bibliography  Save this article

On independence of time and cause

Author

Listed:
  • Kella, Offer

Abstract

For two independent, almost surely finite random variables, independence of their minimum (time) and the events that either one of them is equal to the minimum (cause) is completely characterized. It is shown that, other than for trivial cases where, almost surely, either one random variable is strictly greater than the other or one is a constant and the other is greater than or equal to it, this happens if and only if both random variables are distributed like the same strictly increasing function of two independent random variables, where either both are exponentially distributed or both are geometrically distributed. This is then generalized to the multivariate case.

Suggested Citation

  • Kella, Offer, 2024. "On independence of time and cause," Statistics & Probability Letters, Elsevier, vol. 204(C).
  • Handle: RePEc:eee:stapro:v:204:y:2024:i:c:s0167715223001682
    DOI: 10.1016/j.spl.2023.109944
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715223001682
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2023.109944?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paul Embrechts & Marius Hofert, 2013. "A note on generalized inverses," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 77(3), pages 423-432, June.
    2. W. R. Allen, 1963. "Letter to the Editor---A Note on Conditional Probability of Failure When Hazards are Proportional," Operations Research, INFORMS, vol. 11(4), pages 658-659, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Georg Menz & Moritz Vo{ss}, 2023. "Aggregation of financial markets," Papers 2309.04116, arXiv.org, revised Sep 2024.
    2. Silvana M. Pesenti & Pietro Millossovich & Andreas Tsanakas, 2023. "Differential Quantile-Based Sensitivity in Discontinuous Models," Papers 2310.06151, arXiv.org, revised Oct 2024.
    3. Hofert Marius & Memartoluie Amir & Saunders David & Wirjanto Tony, 2017. "Improved algorithms for computing worst Value-at-Risk," Statistics & Risk Modeling, De Gruyter, vol. 34(1-2), pages 13-31, June.
    4. Basei, Matteo & Ferrari, Giorgio & Rodosthenous, Neofytos, 2023. "Uncertainty over Uncertainty in Environmental Policy Adoption: Bayesian Learning of Unpredictable Socioeconomic Costs," Center for Mathematical Economics Working Papers 677, Center for Mathematical Economics, Bielefeld University.
    5. Matthias Scherer & Henrik Sloot, 2019. "Exogenous shock models: analytical characterization and probabilistic construction," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(8), pages 931-959, November.
    6. Oertel Frank, 2015. "An analysis of the Rüschendorf transform - with a view towards Sklar’s Theorem," Dependence Modeling, De Gruyter, vol. 3(1), pages 1-13, September.
    7. Jianxi Su & Edward Furman, 2016. "Multiple risk factor dependence structures: Copulas and related properties," Papers 1610.02126, arXiv.org.
    8. Sloot Henrik, 2020. "The deFinetti representation of generalised Marshall–Olkin sequences," Dependence Modeling, De Gruyter, vol. 8(1), pages 107-118, January.
    9. Anders Bredahl Kock & David Preinerstorfer & Bezirgen Veliyev, 2022. "Functional Sequential Treatment Allocation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(539), pages 1311-1323, September.
    10. M. Burzoni & I. Peri & C. M. Ruffo, 2017. "On the properties of the Lambda value at risk: robustness, elicitability and consistency," Quantitative Finance, Taylor & Francis Journals, vol. 17(11), pages 1735-1743, November.
    11. Ismaël Mourifié & Marc Henry & Romuald Méango, 2020. "Sharp Bounds and Testability of a Roy Model of STEM Major Choices," Journal of Political Economy, University of Chicago Press, vol. 128(8), pages 3220-3283.
    12. Cyril Bénézet & Emmanuel Gobet & Rodrigo Targino, 2021. "Transform MCMC schemes for sampling intractable factor copula models," Working Papers hal-03334526, HAL.
    13. Ernest Aboagye & Vali Asimit & Tsz Chai Fung & Liang Peng & Qiuqi Wang, 2024. "A Revisit of the Optimal Excess-of-Loss Contract," Papers 2405.00188, arXiv.org.
    14. Arvydas Astrauskas, 2023. "Some Bounds for the Expectations of Functions on Order Statistics and Their Applications," Journal of Theoretical Probability, Springer, vol. 36(2), pages 1116-1147, June.
    15. Cyril Bénézet & Emmanuel Gobet & Rodrigo Targino, 2023. "Transform MCMC Schemes for Sampling Intractable Factor Copula Models," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-41, March.
    16. Mantas Dirma & Saulius Paukštys & Jonas Šiaulys, 2021. "Tails of the Moments for Sums with Dominatedly Varying Random Summands," Mathematics, MDPI, vol. 9(8), pages 1-26, April.
    17. Holly Brannelly & Andrea Macrina & Gareth W. Peters, 2021. "Stochastic measure distortions induced by quantile processes for risk quantification and valuation," Papers 2201.02045, arXiv.org.
    18. Anastasis Kratsios, 2019. "Partial Uncertainty and Applications to Risk-Averse Valuation," Papers 1909.13610, arXiv.org, revised Oct 2019.
    19. Carole Bernard & Gero Junike & Thibaut Lux & Steven Vanduffel, 2024. "Cost-efficient payoffs under model ambiguity," Finance and Stochastics, Springer, vol. 28(4), pages 965-997, October.
    20. Hofert, Marius, 2021. "Right-truncated Archimedean and related copulas," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 79-91.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:204:y:2024:i:c:s0167715223001682. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.