IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v173y2019icp38-50.html
   My bibliography  Save this article

A semiparametric efficient estimator in case-control studies for gene–environment independent models

Author

Listed:
  • Liang, Liang
  • Ma, Yanyuan
  • Carroll, Raymond J.

Abstract

Case-controls studies are popular epidemiological designs for detecting gene–environment interactions in the etiology of complex diseases, where the genetic susceptibility and environmental exposures may often be reasonably assumed independent in the source population. Various papers have presented analytical methods exploiting gene–environment independence to achieve better efficiency, all of which require either a rare disease assumption or a distributional assumption on the genetic variables. We relax both assumptions. We construct a semiparametric estimator in case-control studies exploiting gene–environment independence, while the distributions of genetic susceptibility and environmental exposures are both unspecified and the disease rate is assumed unknown and is not required to be close to zero. The resulting estimator is semiparametric efficient and its superiority over prospective logistic regression, the usual analysis in case-control studies, is demonstrated in various numerical illustrations.

Suggested Citation

  • Liang, Liang & Ma, Yanyuan & Carroll, Raymond J., 2019. "A semiparametric efficient estimator in case-control studies for gene–environment independent models," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 38-50.
  • Handle: RePEc:eee:jmvana:v:173:y:2019:i:c:p:38-50
    DOI: 10.1016/j.jmva.2019.01.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X18300290
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2019.01.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Summer S. Han & Philip S. Rosenberg & Arpita Ghosh & Maria Teresa Landi & Neil E. Caporaso & Nilanjan Chatterjee, 2015. "An exposure‐weighted score test for genetic associations integrating environmental risk factors," Biometrics, The International Biometric Society, vol. 71(3), pages 596-605, September.
    2. Frank Dudbridge, 2013. "Power and Predictive Accuracy of Polygenic Risk Scores," PLOS Genetics, Public Library of Science, vol. 9(3), pages 1-17, March.
    3. Nilanjan Chatterjee & Raymond J. Carroll, 2005. "Semiparametric maximum likelihood estimation exploiting gene-environment independence in case-control studies," Biometrika, Biometrika Trust, vol. 92(2), pages 399-418, June.
    4. Chen, Yi-Hau & Chatterjee, Nilanjan & Carroll, Raymond J., 2009. "Shrinkage Estimators for Robust and Efficient Inference in Haplotype-Based Case-Control Studies," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 220-233.
    5. Anastasios A. Tsiatis & Yanyuan Ma, 2004. "Locally efficient semiparametric estimators for functional measurement error models," Biometrika, Biometrika Trust, vol. 91(4), pages 835-848, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jinbo Chen & Dongyu Lin & Hagit Hochner, 2012. "Semiparametric Maximum Likelihood Methods for Analyzing Genetic and Environmental Effects with Case-Control Mother–Child Pair Data," Biometrics, The International Biometric Society, vol. 68(3), pages 869-877, September.
    2. Brisa N. Sánchez & Shan Kang & Bhramar Mukherjee, 2012. "A Latent Variable Approach to Study Gene–Environment Interactions in the Presence of Multiple Correlated Exposures," Biometrics, The International Biometric Society, vol. 68(2), pages 466-476, June.
    3. Hua Yun Chen & Daniel E. Rader & Mingyao Li, 2015. "Likelihood Inferences on Semiparametric Odds Ratio Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 1125-1135, September.
    4. Yanyuan Ma & Marc G. Genton, 2010. "Explicit estimating equations for semiparametric generalized linear latent variable models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(4), pages 475-495, September.
    5. Mitchell, Brittany L. & Hansell, Narelle K. & McAloney, Kerrie & Martin, Nicholas G. & Wright, Margaret J. & Renteria, Miguel E. & Grasby, Katrina L., 2022. "Polygenic influences associated with adolescent cognitive skills," Intelligence, Elsevier, vol. 94(C).
    6. Li, Mengyan & Ma, Yanyuan & Li, Runze, 2019. "Semiparametric regression for measurement error model with heteroscedastic error," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 320-338.
    7. George B. Busby & Scott Kulm & Alessandro Bolli & Jen Kintzle & Paolo Di Domenico & Giordano Bottà, 2023. "Ancestry-specific polygenic risk scores are risk enhancers for clinical cardiovascular disease assessments," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Bhramar Mukherjee & Jaeil Ahn & Stephen B. Gruber & Malay Ghosh & Nilanjan Chatterjee, 2010. "Case–Control Studies of Gene–Environment Interaction: Bayesian Design and Analysis," Biometrics, The International Biometric Society, vol. 66(3), pages 934-948, September.
    9. Xu, Yilan & Briley, Daniel A. & Brown, Jeffrey R. & Roberts, Brent W., 2017. "Genetic and environmental influences on household financial distress," Journal of Economic Behavior & Organization, Elsevier, vol. 142(C), pages 404-424.
    10. Stoklosa, Jakub & Huang, Yih-Huei & Furlan, Elise & Hwang, Wen-Han, 2016. "On quadratic logistic regression models when predictor variables are subject to measurement error," Computational Statistics & Data Analysis, Elsevier, vol. 95(C), pages 109-121.
    11. Summer S. Han & Philip S. Rosenberg & Nilanjan Chatterjee, 2012. "Testing for Gene--Environment and Gene--Gene Interactions Under Monotonicity Constraints," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(500), pages 1441-1452, December.
    12. Joey Ward & Nicholas Graham & Rona J Strawbridge & Amy Ferguson & Gregory Jenkins & Wenan Chen & Karen Hodgson & Mark Frye & Richard Weinshilboum & Rudolf Uher & Cathryn M Lewis & Joanna Biernacka & D, 2018. "Polygenic risk scores for major depressive disorder and neuroticism as predictors of antidepressant response: Meta-analysis of three treatment cohorts," PLOS ONE, Public Library of Science, vol. 13(9), pages 1-8, September.
    13. Kun Xu & Yanyuan Ma & Liqun Wang, 2015. "Instrument Assisted Regression for Errors in Variables Models with Binary Response," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(1), pages 104-117, March.
    14. Bingxin Zhao & Fei Zou, 2022. "On polygenic risk scores for complex traits prediction," Biometrics, The International Biometric Society, vol. 78(2), pages 499-511, June.
    15. Colin O. Wu & Gang Zheng & Minjung Kwak, 2013. "A Joint Regression Analysis for Genetic Association Studies with Outcome Stratified Samples," Biometrics, The International Biometric Society, vol. 69(2), pages 417-426, June.
    16. Chabris, C. F. & Lee, J. J. & Cesarini, D. & Benjamin, D. J. & Laibson, David I., 2015. "The Fourth Law of Behavior Genetics," Scholarly Articles 30780203, Harvard University Department of Economics.
    17. Bhramar Mukherjee & Li Zhang & Malay Ghosh & Samiran Sinha, 2007. "Semiparametric Bayesian Analysis of Case–Control Data under Conditional Gene-Environment Independence," Biometrics, The International Biometric Society, vol. 63(3), pages 834-844, September.
    18. Yanyuan Ma & Jeffrey D. Hart & Ryan Janicki & Raymond J. Carroll, 2011. "Local and omnibus goodness‐of‐fit tests in classical measurement error models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(1), pages 81-98, January.
    19. John Beshears & James J. Choi & David Laibson & Brigitte C. Madrian & Katherine L. Milkman, 2015. "The Effect of Providing Peer Information on Retirement Savings Decisions," Journal of Finance, American Finance Association, vol. 70(3), pages 1161-1201, June.
    20. Tina Tsz-Ting Chui & Wen-Chung Lee, 2014. "Estimating Risks and Relative Risks in Case-Base Studies under the Assumptions of Gene-Environment Independence and Hardy-Weinberg Equilibrium," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-5, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:173:y:2019:i:c:p:38-50. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.