IDEAS home Printed from https://ideas.repec.org/p/hhs/sduhec/2016_007.html
   My bibliography  Save this paper

Measuring the Effect of the Polygenic Risk Score on the Aging Rate

Author

Listed:
  • Effraimidis, Georgios

    (COHERE)

  • Levine, Morgan

    (Department of Human Genetics)

  • Crimmins, Eileen

    (USC Davis School of Gerontology)

Abstract

Population aging has emerged as a major demographic trend around the globe. Aging is a process that is determined by millions of genetic factors. The identification of the set of genetic factors that has a significant role in the aging process is a highly challenging task. This paper studies the association between genetic factors and the aging rate. We first calculate the so-called polygenic risk score (PRS) by following a well-designed algorithm for the selection of the significant single nucleotide polymorphisms (SNPs) and subsequently considering a weighted sum of those significant SNPs. Next, we construct a new mortality model, which allows the aging rate to depend on the PRS. Our statistical analysis is based on a rich dataset from the Health and Retirement Study.

Suggested Citation

  • Effraimidis, Georgios & Levine, Morgan & Crimmins, Eileen, 2016. "Measuring the Effect of the Polygenic Risk Score on the Aging Rate," DaCHE discussion papers 2016:7, University of Southern Denmark, Dache - Danish Centre for Health Economics.
  • Handle: RePEc:hhs:sduhec:2016_007
    as

    Download full text from publisher

    File URL: http://www.sdu.dk/-/media/files/om_sdu/centre/cohere/working+papers/2016/wp-7_2016.pdf?la=en
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Frank Dudbridge, 2013. "Power and Predictive Accuracy of Polygenic Risk Scores," PLOS Genetics, Public Library of Science, vol. 9(3), pages 1-17, March.
    2. James Vaupel & Kenneth Manton & Eric Stallard, 1979. "The impact of heterogeneity in individual frailty on the dynamics of mortality," Demography, Springer;Population Association of America (PAA), vol. 16(3), pages 439-454, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bagdonavicius, Vilijandas & Nikulin, Mikhail, 2000. "On goodness-of-fit for the linear transformation and frailty models," Statistics & Probability Letters, Elsevier, vol. 47(2), pages 177-188, April.
    2. Feehan, Dennis & Wrigley-Field, Elizabeth, 2020. "How do populations aggregate?," SocArXiv 2fkw3, Center for Open Science.
    3. K. Motarjem & M. Mohammadzadeh & A. Abyar, 2020. "Geostatistical survival model with Gaussian random effect," Statistical Papers, Springer, vol. 61(1), pages 85-107, February.
    4. Xu, Linzhi & Zhang, Jiajia, 2010. "An EM-like algorithm for the semiparametric accelerated failure time gamma frailty model," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1467-1474, June.
    5. Mitchell, Brittany L. & Hansell, Narelle K. & McAloney, Kerrie & Martin, Nicholas G. & Wright, Margaret J. & Renteria, Miguel E. & Grasby, Katrina L., 2022. "Polygenic influences associated with adolescent cognitive skills," Intelligence, Elsevier, vol. 94(C).
    6. Annamaria Olivieri & Ermanno Pitacco, 2016. "Frailty and Risk Classification for Life Annuity Portfolios," Risks, MDPI, vol. 4(4), pages 1-23, October.
    7. James W. Vaupel, 2002. "Post-Darwinian longevity," MPIDR Working Papers WP-2002-043, Max Planck Institute for Demographic Research, Rostock, Germany.
    8. Maxim S. Finkelstein, 2005. "Shocks in homogeneous and heterogeneous populations," MPIDR Working Papers WP-2005-024, Max Planck Institute for Demographic Research, Rostock, Germany.
    9. Luping Zhao & Timothy E. Hanson, 2011. "Spatially Dependent Polya Tree Modeling for Survival Data," Biometrics, The International Biometric Society, vol. 67(2), pages 391-403, June.
    10. Yeo, Keng Leong & Valdez, Emiliano A., 2006. "Claim dependence with common effects in credibility models," Insurance: Mathematics and Economics, Elsevier, vol. 38(3), pages 609-629, June.
    11. Hui Zheng, 2014. "Aging in the Context of Cohort Evolution and Mortality Selection," Demography, Springer;Population Association of America (PAA), vol. 51(4), pages 1295-1317, August.
    12. Graziella Caselli & Franco Peracchi & Elisabetta Barbi & Rosa Maria Lipsi, 2003. "Differential Mortality and the Design of the Italian System of Public Pensions," LABOUR, CEIS, vol. 17(s1), pages 45-78, August.
    13. Enrique Acosta & Alain Gagnon & Nadine Ouellette & Robert R. Bourbeau & Marilia R. Nepomuceno & Alyson A. van Raalte, 2020. "The boomer penalty: excess mortality among baby boomers in Canada and the United States," MPIDR Working Papers WP-2020-003, Max Planck Institute for Demographic Research, Rostock, Germany.
    14. Zhang, Zhehao, 2018. "Renewal sums under mixtures of exponentials," Applied Mathematics and Computation, Elsevier, vol. 337(C), pages 281-301.
    15. Hess Wolfgang & Tutz Gerhard & Gertheiss Jan, 2016. "A Flexible Link Function for Discrete-Time Duration Models," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 236(4), pages 455-481, August.
    16. Bas Klaauw & Limin Wang, 2011. "Child mortality in rural India," Journal of Population Economics, Springer;European Society for Population Economics, vol. 24(2), pages 601-628, April.
    17. Xian Liu, 2000. "Development of a Structural Hazard Rate Model in Sociological Research," Sociological Methods & Research, , vol. 29(1), pages 77-117, August.
    18. George B. Busby & Scott Kulm & Alessandro Bolli & Jen Kintzle & Paolo Di Domenico & Giordano Bottà, 2023. "Ancestry-specific polygenic risk scores are risk enhancers for clinical cardiovascular disease assessments," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    19. Hsieh Fushing, 2012. "Semiparametric efficient inferences for lifetime regression model with time-dependent covariates," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(1), pages 1-25, February.
    20. M S Finkelstein, 2008. "Reliability modelling for biological ageing," Journal of Risk and Reliability, , vol. 222(1), pages 1-6, March.

    More about this item

    Keywords

    Aging rate; Genome-wide association study; Mortality rate; Polygenic risk score;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:sduhec:2016_007. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christian Volmar Skovsgaard (email available below). General contact details of provider: https://edirc.repec.org/data/hesdudk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.