Point-wise estimation for anisotropic densities
Author
Abstract
Suggested Citation
DOI: 10.1016/j.jmva.2018.11.014
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Kerkyacharian, G. & Picard, D., 1992. "Density estimation in Besov spaces," Statistics & Probability Letters, Elsevier, vol. 13(1), pages 15-24, January.
- Walter, Gilbert G., 1999. "Density estimation in the presence of noise," Statistics & Probability Letters, Elsevier, vol. 41(3), pages 237-246, February.
- Pensky, Marianna, 2002. "Density deconvolution based on wavelets with bounded supports," Statistics & Probability Letters, Elsevier, vol. 56(3), pages 261-269, February.
- Butucea, Cristina, 2000. "The adaptive rate of convergence in a problem of pointwise density estimation," Statistics & Probability Letters, Elsevier, vol. 47(1), pages 85-90, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Kato, Takeshi, 1999. "Density estimation by truncated wavelet expansion," Statistics & Probability Letters, Elsevier, vol. 43(2), pages 159-168, June.
- Gérard, Kerkyacharian & Dominique, Picard, 1997. "Limit of the quadratic risk in density estimation using linear methods," Statistics & Probability Letters, Elsevier, vol. 31(4), pages 299-312, February.
- Pensky, Marianna, 2002. "Density deconvolution based on wavelets with bounded supports," Statistics & Probability Letters, Elsevier, vol. 56(3), pages 261-269, February.
- Karun Adusumilli & Taisuke Otsu, 2015.
"Nonparametric instrumental regression with errors in variables,"
STICERD - Econometrics Paper Series
/2015/585, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
- Adusumilli, Karun & Otsu, Taisuke, 2018. "Nonparametric instrumental regression with errors in variables," LSE Research Online Documents on Economics 85871, London School of Economics and Political Science, LSE Library.
- A. Antoniadis, 1997. "Wavelets in statistics: A review," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 6(2), pages 97-130, August.
- Masry, Elias, 1997. "Multivariate probability density estimation by wavelet methods: Strong consistency and rates for stationary time series," Stochastic Processes and their Applications, Elsevier, vol. 67(2), pages 177-193, May.
- Durastanti, Claudio, 2016. "Adaptive global thresholding on the sphere," Journal of Multivariate Analysis, Elsevier, vol. 151(C), pages 110-132.
- Antonio Cosma & Olivier Scaillet & Rainer von Sachs, 2005. "Multiariate Wavelet-based sahpe preserving estimation for dependant observation," FAME Research Paper Series rp144, International Center for Financial Asset Management and Engineering.
- García Treviño, E.S. & Alarcón Aquino, V. & Barria, J.A., 2019. "The radial wavelet frame density estimator," Computational Statistics & Data Analysis, Elsevier, vol. 130(C), pages 111-139.
- Zeng, Xiaochen & Wang, Jinru, 2018. "Wavelet density deconvolution estimations with heteroscedastic measurement errors," Statistics & Probability Letters, Elsevier, vol. 134(C), pages 79-85.
- Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2011.
"Inference on Treatment Effects After Selection Amongst High-Dimensional Controls,"
Papers
1201.0224, arXiv.org, revised May 2012.
- Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2012. "Inference on treatment effects after selection amongst high-dimensional controls," CeMMAP working papers 10/12, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2013. "Inference on treatment effects after selection amongst high-dimensional controls," CeMMAP working papers 26/13, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2012. "Inference on treatment effects after selection amongst high-dimensional controls," CeMMAP working papers CWP10/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2013. "Inference on treatment effects after selection amongst high-dimensional controls," CeMMAP working papers CWP26/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Gaëlle Chagny & Claire Lacour, 2015. "Optimal adaptive estimation of the relative density," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(3), pages 605-631, September.
- Sakshi Arya & Anuj Abhishek, 2023. "Adaptive Estimation of a Function from its Exponential Radon Transform in Presence of Noise," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(2), pages 1127-1155, August.
- Autin, F. & Le Pennec, E. & Tribouley, K., 2010. "Thresholding methods to estimate copula density," Journal of Multivariate Analysis, Elsevier, vol. 101(1), pages 200-222, January.
- Hoffmann, Marc, 1997. "Minimax estimation of the diffusion coefficient through irregular samplings," Statistics & Probability Letters, Elsevier, vol. 32(1), pages 11-24, February.
- Liang, Han-Ying & de Uña-Álvarez, Jacobo, 2011. "Wavelet estimation of conditional density with truncated, censored and dependent data," Journal of Multivariate Analysis, Elsevier, vol. 102(3), pages 448-467, March.
- Marianna Pensky, 2002. "Locally Adaptive Wavelet Empirical Bayes Estimation of a Location Parameter," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 54(1), pages 83-99, March.
- Koo, Ja-Yong & Kim, Woo-Chul, 1996. "Wavelet density estimation by approximation of log-densities," Statistics & Probability Letters, Elsevier, vol. 26(3), pages 271-278, February.
- Harry Zanten & Pawel Zareba, 2008. "A note on wavelet density deconvolution for weakly dependent data," Statistical Inference for Stochastic Processes, Springer, vol. 11(2), pages 207-219, June.
- Leblanc, Frédérique, 1996. "Wavelet linear density estimator for a discrete-time stochastic process: Lp-losses," Statistics & Probability Letters, Elsevier, vol. 27(1), pages 71-84, March.
More about this item
Keywords
Adaptivity; Anisotropic density; Local Hölder condition; Optimality; Point-wise estimation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:171:y:2019:i:c:p:112-125. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.