IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v148y2016icp73-82.html
   My bibliography  Save this article

Analysis of bivariate zero inflated count data with missing responses

Author

Listed:
  • Yang, Miao
  • Das, Kalyan
  • Majumdar, Anandamayee

Abstract

Bivariate zero-inflated Poisson regression models have recently been used in various medical and biological settings to model excess zeros. However, there has not been any definite approach to deal with the same in the event of missing responses. The model itself is complex and as the responses are paired, missing values can occur in either or both coordinates. We propose a flexible Monte Carlo expectation maximization based approach to handle bivariate zero inflated count data with missing responses. We report the results of a simulation study designed to evaluate the performance of the proposed approach. To illustrate the application of our model and methodology, we consider a bivariate data concerning the demand for health care in Australia.

Suggested Citation

  • Yang, Miao & Das, Kalyan & Majumdar, Anandamayee, 2016. "Analysis of bivariate zero inflated count data with missing responses," Journal of Multivariate Analysis, Elsevier, vol. 148(C), pages 73-82.
  • Handle: RePEc:eee:jmvana:v:148:y:2016:i:c:p:73-82
    DOI: 10.1016/j.jmva.2016.02.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X16000324
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2016.02.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Amy L. Stubbendick & Joseph G. Ibrahim, 2003. "Maximum Likelihood Methods for Nonignorable Missing Responses and Covariates in Random Effects Models," Biometrics, The International Biometric Society, vol. 59(4), pages 1140-1150, December.
    2. Chen, Baojiang & Yi, Grace Y. & Cook, Richard J., 2010. "Weighted Generalized Estimating Functions for Longitudinal Response and Covariate Data That Are Missing at Random," Journal of the American Statistical Association, American Statistical Association, vol. 105(489), pages 336-353.
    3. Davidson, Russell & MacKinnon, James G., 1993. "Estimation and Inference in Econometrics," OUP Catalogue, Oxford University Press, number 9780195060119.
    4. Chen, Xue-Dong & Fu, Ying-Zi, 2011. "Model selection for zero-inflated regression with missing covariates," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 765-773, January.
    5. G. Y. Yi & W. Liu & Lang Wu, 2011. "Simultaneous Inference and Bias Analysis for Longitudinal Data with Covariate Measurement Error and Missing Responses," Biometrics, The International Biometric Society, vol. 67(1), pages 67-75, March.
    6. Wei Liu & Lang Wu, 2007. "Simultaneous Inference for Semiparametric Nonlinear Mixed-Effects Models with Covariate Measurement Errors and Missing Responses," Biometrics, The International Biometric Society, vol. 63(2), pages 342-350, June.
    7. Chen, Qingxia & Ibrahim, Joseph G. & Chen, Ming-Hui & Senchaudhuri, Pralay, 2008. "Theory and inference for regression models with missing responses and covariates," Journal of Multivariate Analysis, Elsevier, vol. 99(6), pages 1302-1331, July.
    8. J. G. Booth & J. P. Hobert, 1999. "Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(1), pages 265-285.
    9. Karlis, Dimitris & Ntzoufras, Ioannis, 2005. "Bivariate Poisson and Diagonal Inflated Bivariate Poisson Regression Models in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 14(i10).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fang, Fang & Shao, Jun, 2016. "Iterated imputation estimation for generalized linear models with missing response and covariate values," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 111-123.
    2. Bian, Yuan & Yi, Grace Y. & He, Wenqing, 2024. "A unified framework of analyzing missing data and variable selection using regularized likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 194(C).
    3. Baojiang Chen & Xiao-Hua Zhou, 2011. "Doubly Robust Estimates for Binary Longitudinal Data Analysis with Missing Response and Missing Covariates," Biometrics, The International Biometric Society, vol. 67(3), pages 830-842, September.
    4. Hanze Zhang & Yangxin Huang, 2020. "Quantile regression-based Bayesian joint modeling analysis of longitudinal–survival data, with application to an AIDS cohort study," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(2), pages 339-368, April.
    5. Bindele, Huybrechts F. & Nguelifack, Brice M., 2019. "Generalized signed-rank estimation for regression models with non-ignorable missing responses," Computational Statistics & Data Analysis, Elsevier, vol. 139(C), pages 14-33.
    6. Weiping Zhang & Feiyue Xie & Jiaxin Tan, 2020. "A robust joint modeling approach for longitudinal data with informative dropouts," Computational Statistics, Springer, vol. 35(4), pages 1759-1783, December.
    7. Regier Michael D. & Moodie Erica E. M., 2016. "The Orthogonally Partitioned EM Algorithm: Extending the EM Algorithm for Algorithmic Stability and Bias Correction Due to Imperfect Data," The International Journal of Biostatistics, De Gruyter, vol. 12(1), pages 65-77, May.
    8. Qin, Guoyou & Zhang, Jiajia & Zhu, Zhongyi, 2016. "Simultaneous mean and covariance estimation of partially linear models for longitudinal data with missing responses and covariate measurement error," Computational Statistics & Data Analysis, Elsevier, vol. 96(C), pages 24-39.
    9. Rana, Subrata & Roy, Surupa & Das, Kalyan, 2018. "Analysis of ordinal longitudinal data under nonignorable missingness and misreporting: An application to Alzheimer’s disease study," Journal of Multivariate Analysis, Elsevier, vol. 166(C), pages 62-77.
    10. G. Y. Yi & W. Liu & Lang Wu, 2011. "Simultaneous Inference and Bias Analysis for Longitudinal Data with Covariate Measurement Error and Missing Responses," Biometrics, The International Biometric Society, vol. 67(1), pages 67-75, March.
    11. Hillebrand, Eric & Schnabl, Gunther & Ulu, Yasemin, 2009. "Japanese foreign exchange intervention and the yen-to-dollar exchange rate: A simultaneous equations approach using realized volatility," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 19(3), pages 490-505, July.
    12. Giuseppe Croce & Emanuela Ghignoni, 2011. "Overeducation and spatial flexibility in Italian local labour markets," Working Papers in Public Economics 145, University of Rome La Sapienza, Department of Economics and Law.
    13. Darrian Collins & Clem Tisdell, 2004. "Outbound Business Travel Depends on Business Returns: Australian Evidence," Australian Economic Papers, Wiley Blackwell, vol. 43(2), pages 192-207, June.
    14. Jongeneel, Roelof A. & Ge, Lan, 2005. "Explaining Growth in Dutch Agriculture: Prices, Public R&D, and Technological Change," 2005 International Congress, August 23-27, 2005, Copenhagen, Denmark 24573, European Association of Agricultural Economists.
    15. Barnett, William A. & Serletis, Apostolos, 2008. "Consumer preferences and demand systems," Journal of Econometrics, Elsevier, vol. 147(2), pages 210-224, December.
    16. Hany Eldemerdash & Hugh Metcalf & Sara Maioli, 2014. "Twin deficits: new evidence from a developing (oil vs. non-oil) countries’ perspective," Empirical Economics, Springer, vol. 47(3), pages 825-851, November.
    17. Rao, Surekha & Ghali, Moheb & Krieg, John, 2008. "On the J-test for nonnested hypotheses and Bayesian extension," MPRA Paper 14637, University Library of Munich, Germany.
    18. Schimmelpfennig, Axel, 1998. "The celtic tiger faces the factor price frontier: Labour market adjustment in Ireland," Kiel Working Papers 855, Kiel Institute for the World Economy (IfW Kiel).
    19. Saul Lach & Mark Schankerman, 2008. "Incentives and invention in universities," RAND Journal of Economics, RAND Corporation, vol. 39(2), pages 403-433, June.
    20. Maria Iacovou, 2002. "Class Size in the Early Years: Is Smaller Really Better?," Education Economics, Taylor & Francis Journals, vol. 10(3), pages 261-290.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:148:y:2016:i:c:p:73-82. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.