IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v32y2019i4d10.1007_s10959-018-0849-6.html
   My bibliography  Save this article

The Defect of Random Hyperspherical Harmonics

Author

Listed:
  • Maurizia Rossi

    (Université Paris Descartes)

Abstract

Random hyperspherical harmonics are Gaussian Laplace eigenfunctions on the unit d-sphere ( $$d\ge 2$$ d ≥ 2 ). We investigate the distribution of their defect, i.e., the difference between the measure of positive and negative regions. Marinucci and Wigman studied the two-dimensional case giving the asymptotic variance (Marinucci and Wigman in J Phys A Math Theor 44:355206, 2011) and a central limit theorem (Marinucci and Wigman in Commun Math Phys 327(3):849–872, 2014), both in the high-energy limit. Our main results concern asymptotics for the defect variance and quantitative CLTs in Wasserstein distance, in any dimension. The proofs are based on Wiener–Itô chaos expansions for the defect, a careful use of asymptotic results for all order moments of Gegenbauer polynomials and Stein–Malliavin approximation techniques by Nourdin and Peccati (in Prob Theory Relat Fields 145(1–2):75–118, 2009; Normal approximations with Malliavin calculus. Cambridge Tracts in Mathematics, vol 192, Cambridge University Press, Cambridge, 2012). Our argument requires some novel technical results of independent interest that involve integrals of the product of three hyperspherical harmonics.

Suggested Citation

  • Maurizia Rossi, 2019. "The Defect of Random Hyperspherical Harmonics," Journal of Theoretical Probability, Springer, vol. 32(4), pages 2135-2165, December.
  • Handle: RePEc:spr:jotpro:v:32:y:2019:i:4:d:10.1007_s10959-018-0849-6
    DOI: 10.1007/s10959-018-0849-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-018-0849-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-018-0849-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pham, Viet-Hung, 2013. "On the rate of convergence for central limit theorems of sojourn times of Gaussian fields," Stochastic Processes and their Applications, Elsevier, vol. 123(6), pages 2158-2174.
    2. Durastanti, Claudio, 2016. "Adaptive global thresholding on the sphere," Journal of Multivariate Analysis, Elsevier, vol. 151(C), pages 110-132.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Valentina Cammarota & Domenico Marinucci, 2022. "On the Correlation of Critical Points and Angular Trispectrum for Random Spherical Harmonics," Journal of Theoretical Probability, Springer, vol. 35(4), pages 2269-2303, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Huiping & Chen, Yong & Liu, Yong, 2024. "Kernel representation formula: From complex to real Wiener–Itô integrals and vice versa," Stochastic Processes and their Applications, Elsevier, vol. 167(C).
    2. Marie Kratz & Sreekar Vadlamani, 2016. "CLT for Lipschitz-Killing curvatures of excursion sets of Gaussian random fields," Working Papers hal-01373091, HAL.
    3. Elena Di Bernardino & Céline Duval, 2022. "Statistics for Gaussian random fields with unknown location and scale using Lipschitz‐Killing curvatures," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(1), pages 143-184, March.
    4. Marie Kratz & Sreekar Vadlamani, 2018. "Central Limit Theorem for Lipschitz–Killing Curvatures of Excursion Sets of Gaussian Random Fields," Journal of Theoretical Probability, Springer, vol. 31(3), pages 1729-1758, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:32:y:2019:i:4:d:10.1007_s10959-018-0849-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.