Spectral analysis of the Moore–Penrose inverse of a large dimensional sample covariance matrix
Author
Abstract
Suggested Citation
DOI: 10.1016/j.jmva.2016.03.001
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Kubokawa, Tatsuya & Srivastava, Muni S., 2008. "Estimation of the precision matrix of a singular Wishart distribution and its application in high-dimensional data," Journal of Multivariate Analysis, Elsevier, vol. 99(9), pages 1906-1928, October.
- Silverstein, J. W., 1995. "Strong Convergence of the Empirical Distribution of Eigenvalues of Large Dimensional Random Matrices," Journal of Multivariate Analysis, Elsevier, vol. 55(2), pages 331-339, November.
- Bodnar, Taras & Gupta, Arjun K. & Parolya, Nestor, 2016. "Direct shrinkage estimation of large dimensional precision matrix," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 223-236.
- Rubio, Francisco & Mestre, Xavier, 2011. "Spectral convergence for a general class of random matrices," Statistics & Probability Letters, Elsevier, vol. 81(5), pages 592-602, May.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Xu, Xuefeng, 2020. "On the perturbation of the Moore–Penrose inverse of a matrix," Applied Mathematics and Computation, Elsevier, vol. 374(C).
- Bodnar, Taras & Okhrin, Ostap & Parolya, Nestor, 2019.
"Optimal shrinkage estimator for high-dimensional mean vector,"
Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 63-79.
- Taras Bodnar & Ostap Okhrin & Nestor Parolya, 2016. "Optimal Shrinkage Estimator for High-Dimensional Mean Vector," Papers 1610.09292, arXiv.org, revised Jul 2018.
- Aneiros, Germán & Cao, Ricardo & Fraiman, Ricardo & Genest, Christian & Vieu, Philippe, 2019. "Recent advances in functional data analysis and high-dimensional statistics," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 3-9.
- Bodnar, Olha & Bodnar, Taras & Parolya, Nestor, 2022. "Recent advances in shrinkage-based high-dimensional inference," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
- Jonathan Gillard & Emily O’Riordan & Anatoly Zhigljavsky, 2023. "Polynomial whitening for high-dimensional data," Computational Statistics, Springer, vol. 38(3), pages 1427-1461, September.
- Andrew Grant & Oh Kang Kwon & Steve Satchell, 2024. "Properties of risk aversion estimated from portfolio weights," Journal of Asset Management, Palgrave Macmillan, vol. 25(5), pages 427-444, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Bodnar, Olha & Bodnar, Taras & Parolya, Nestor, 2022. "Recent advances in shrinkage-based high-dimensional inference," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
- Taras Bodnar & Nikolaus Hautsch & Yarema Okhrin & Nestor Parolya, 2024. "Consistent Estimation of the High-Dimensional Efficient Frontier," Papers 2409.15103, arXiv.org.
- Bodnar, Taras & Gupta, Arjun K. & Parolya, Nestor, 2016. "Direct shrinkage estimation of large dimensional precision matrix," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 223-236.
- Taras Bodnar & Stepan Mazur & Nestor Parolya, 2019.
"Central limit theorems for functionals of large sample covariance matrix and mean vector in matrix‐variate location mixture of normal distributions,"
Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 46(2), pages 636-660, June.
- Bodnar, Taras & Mazur, Stepan & Parolya, Nestor, 2017. "Central limit theorems for functionals of large sample covariance matrix and mean vector in matrix-variate location mixture of normal distributions," Working Papers 2017:5, Örebro University, School of Business.
- Tsubasa Ito & Tatsuya Kubokawa, 2015. "Linear Ridge Estimator of High-Dimensional Precision Matrix Using Random Matrix Theory ," CIRJE F-Series CIRJE-F-995, CIRJE, Faculty of Economics, University of Tokyo.
- Bodnar, Taras & Parolya, Nestor & Schmid, Wolfgang, 2018.
"Estimation of the global minimum variance portfolio in high dimensions,"
European Journal of Operational Research, Elsevier, vol. 266(1), pages 371-390.
- Taras Bodnar & Nestor Parolya & Wolfgang Schmid, 2014. "Estimation of the Global Minimum Variance Portfolio in High Dimensions," Papers 1406.0437, arXiv.org, revised Nov 2015.
- Taras Bodnar & Nestor Parolya & Erik Thorsen, 2021. "Dynamic Shrinkage Estimation of the High-Dimensional Minimum-Variance Portfolio," Papers 2106.02131, arXiv.org, revised Nov 2021.
- Bodnar, Taras & Gupta, Arjun K. & Parolya, Nestor, 2014.
"On the strong convergence of the optimal linear shrinkage estimator for large dimensional covariance matrix,"
Journal of Multivariate Analysis, Elsevier, vol. 132(C), pages 215-228.
- Taras Bodnar & Arjun K. Gupta & Nestor Parolya, 2013. "On the Strong Convergence of the Optimal Linear Shrinkage Estimator for Large Dimensional Covariance Matrix," Papers 1308.2608, arXiv.org, revised Jun 2014.
- Taras Bodnar & Yarema Okhrin & Nestor Parolya, 2022.
"Optimal Shrinkage-Based Portfolio Selection in High Dimensions,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(1), pages 140-156, December.
- Taras Bodnar & Yarema Okhrin & Nestor Parolya, 2016. "Optimal shrinkage-based portfolio selection in high dimensions," Papers 1611.01958, arXiv.org, revised Nov 2021.
- Olivier Ledoit & Michael Wolf, 2019. "Quadratic shrinkage for large covariance matrices," ECON - Working Papers 335, Department of Economics - University of Zurich, revised Dec 2020.
- Taras Bodnar & Arjun K. Gupta & Nestor Parolya, 2013. "Optimal Linear Shrinkage Estimator for Large Dimensional Precision Matrix," Papers 1308.0931, arXiv.org, revised Mar 2014.
- Merlevède, F. & Peligrad, M., 2016. "On the empirical spectral distribution for matrices with long memory and independent rows," Stochastic Processes and their Applications, Elsevier, vol. 126(9), pages 2734-2760.
- Chen, Jiaqi & Zhang, Yangchun & Li, Weiming & Tian, Boping, 2018. "A supplement on CLT for LSS under a large dimensional generalized spiked covariance model," Statistics & Probability Letters, Elsevier, vol. 138(C), pages 57-65.
- Konno, Yoshihiko, 2009. "Shrinkage estimators for large covariance matrices in multivariate real and complex normal distributions under an invariant quadratic loss," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2237-2253, November.
- Huanchao Zhou & Zhidong Bai & Jiang Hu, 2023. "The Limiting Spectral Distribution of Large-Dimensional General Information-Plus-Noise-Type Matrices," Journal of Theoretical Probability, Springer, vol. 36(2), pages 1203-1226, June.
- Li, Zeng & Pan, Guangming & Yao, Jianfeng, 2015. "On singular value distribution of large-dimensional autocovariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 137(C), pages 119-140.
- Tian, Xintao & Lu, Yuting & Li, Weiming, 2015. "A robust test for sphericity of high-dimensional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 141(C), pages 217-227.
- Pan, Guangming, 2010. "Strong convergence of the empirical distribution of eigenvalues of sample covariance matrices with a perturbation matrix," Journal of Multivariate Analysis, Elsevier, vol. 101(6), pages 1330-1338, July.
- Anatolyev, Stanislav, 2012.
"Inference in regression models with many regressors,"
Journal of Econometrics, Elsevier, vol. 170(2), pages 368-382.
- Stanislav Anatolyev, 2009. "Inference in Regression Models with Many Regressors," Working Papers w0125, Center for Economic and Financial Research (CEFIR).
- Stanislav Anatolyev, 2009. "Inference in Regression Models with Many Regressors," Working Papers w0125, New Economic School (NES).
- Couillet, Romain, 2015. "Robust spiked random matrices and a robust G-MUSIC estimator," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 139-161.
More about this item
Keywords
CLT; Large-dimensional asymptotics; Moore–Penrose inverse; Random matrix theory;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:148:y:2016:i:c:p:160-172. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.