IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v194y2023ics0167715222002711.html
   My bibliography  Save this article

Minimax rate for optimal transport regression between distributions

Author

Listed:
  • Ghodrati, Laya
  • Panaretos, Victor M.

Abstract

Distribution-on-distribution regression considers the problem of formulating and estimating a regression relationship where both covariate and response are probability distributions. The optimal transport distributional regression model postulates that the conditional Fréchet mean of the response distribution is linked to the covariate distribution via an optimal transport map. We establish the minimax rate of estimation of such a regression function, by deriving a lower bound that matches the convergence rate attained by the Fréchet least squares estimator.

Suggested Citation

  • Ghodrati, Laya & Panaretos, Victor M., 2023. "Minimax rate for optimal transport regression between distributions," Statistics & Probability Letters, Elsevier, vol. 194(C).
  • Handle: RePEc:eee:stapro:v:194:y:2023:i:c:s0167715222002711
    DOI: 10.1016/j.spl.2022.109758
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715222002711
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2022.109758?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brunel, Élodie & Mas, André & Roche, Angelina, 2016. "Non-asymptotic adaptive prediction in functional linear models," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 208-232.
    2. Chao Zhang & Piotr Kokoszka & Alexander Petersen, 2022. "Wasserstein autoregressive models for density time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(1), pages 30-52, January.
    3. Aneiros, Germán & Cao, Ricardo & Fraiman, Ricardo & Genest, Christian & Vieu, Philippe, 2019. "Recent advances in functional data analysis and high-dimensional statistics," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 3-9.
    4. Laya Ghodrati & Victor M Panaretos, 2022. "Distribution-on-distribution regression via optimal transport maps [Upper and lower risk bounds for estimating the Wasserstein barycenter of random measures on the real line]," Biometrika, Biometrika Trust, vol. 109(4), pages 957-974.
    5. Petersen, Alexander & Zhang, Chao & Kokoszka, Piotr, 2022. "Modeling Probability Density Functions as Data Objects," Econometrics and Statistics, Elsevier, vol. 21(C), pages 159-178.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Okano, Ryo & Imaizumi, Masaaki, 2024. "Distribution-on-distribution regression with Wasserstein metric: Multivariate Gaussian case," Journal of Multivariate Analysis, Elsevier, vol. 203(C).
    2. Laya Ghodrati & Victor M. Panaretos, 2024. "On distributional autoregression and iterated transportation," Journal of Time Series Analysis, Wiley Blackwell, vol. 45(5), pages 739-770, September.
    3. Tadao Hoshino, 2024. "Functional Spatial Autoregressive Models," Papers 2402.14763, arXiv.org, revised Oct 2024.
    4. Římalová, Veronika & Fišerová, Eva & Menafoglio, Alessandra & Pini, Alessia, 2022. "Inference for spatial regression models with functional response using a permutational approach," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    5. Horváth, Lajos & Rice, Gregory & Zhao, Yuqian, 2022. "Change point analysis of covariance functions: A weighted cumulative sum approach," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    6. Kokoszka, Piotr & Kulik, Rafał, 2023. "Principal component analysis of infinite variance functional data," Journal of Multivariate Analysis, Elsevier, vol. 193(C).
    7. Litimein, Ouahiba & Laksaci, Ali & Mechab, Boubaker & Bouzebda, Salim, 2023. "Local linear estimate of the functional expectile regression," Statistics & Probability Letters, Elsevier, vol. 192(C).
    8. Cho, Min Ho & Kurtek, Sebastian & Bharath, Karthik, 2022. "Tangent functional canonical correlation analysis for densities and shapes, with applications to multimodal imaging data," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    9. Castrillón-Candás, Julio E. & Kon, Mark, 2022. "Anomaly detection: A functional analysis perspective," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    10. Aubin, Jean-Baptiste & Bongiorno, Enea G. & Goia, Aldo, 2022. "The correction term in a small-ball probability factorization for random curves," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    11. Zhang, Qi & Li, Bing & Xue, Lingzhou, 2024. "Nonlinear sufficient dimension reduction for distribution-on-distribution regression," Journal of Multivariate Analysis, Elsevier, vol. 202(C).
    12. Ferraccioli, Federico & Sangalli, Laura M. & Finos, Livio, 2022. "Some first inferential tools for spatial regression with differential regularization," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    13. Steven Campbell & Ting-Kam Leonard Wong, 2022. "Efficient convex PCA with applications to Wasserstein GPCA and ranked data," Papers 2211.02990, arXiv.org, revised Aug 2024.
    14. Angelina Roche, 2018. "Local optimization of black-box functions with high or infinite-dimensional inputs: application to nuclear safety," Computational Statistics, Springer, vol. 33(1), pages 467-485, March.
    15. Makigusa, Natsumi & Naito, Kanta, 2020. "Asymptotics and practical aspects of testing normality with kernel methods," Journal of Multivariate Analysis, Elsevier, vol. 180(C).
    16. Balogoun, Armando Sosthène Kali & Nkiet, Guy Martial & Ogouyandjou, Carlos, 2021. "Asymptotic normality of a generalized maximum mean discrepancy estimator," Statistics & Probability Letters, Elsevier, vol. 169(C).
    17. Boumahdi, Mounir & Ouassou, Idir & Rachdi, Mustapha, 2023. "Estimation in nonparametric functional-on-functional models with surrogate responses," Journal of Multivariate Analysis, Elsevier, vol. 198(C).
    18. Meintanis, Simos G. & Hušková, Marie & Hlávka, Zdeněk, 2022. "Fourier-type tests of mutual independence between functional time series," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    19. Caponera, Alessia & Panaretos, Victor M., 2022. "On the rate of convergence for the autocorrelation operator in functional autoregression," Statistics & Probability Letters, Elsevier, vol. 189(C).
    20. Boukhiar, Souad & Mourid, Tahar, 2022. "Resolvent estimators for functional autoregressive processes with random coefficients," Journal of Multivariate Analysis, Elsevier, vol. 189(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:194:y:2023:i:c:s0167715222002711. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.