IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v42y2015i1p43-62.html
   My bibliography  Save this article

A Note on Estimation in Hilbertian Linear Models

Author

Listed:
  • Siegfried Hörmann
  • Łukasz Kidziński

Abstract

type="main" xml:id="sjos12094-abs-0001"> We study estimation and prediction in linear models where the response and the regressor variable both take values in some Hilbert space. Our main objective is to obtain consistency of a principal component-based estimator for the regression operator under minimal assumptions. In particular, we avoid some inconvenient technical restrictions that have been used throughout the literature. We develop our theory in a time-dependent setup that comprises as important special case the autoregressive Hilbertian model.

Suggested Citation

  • Siegfried Hörmann & Łukasz Kidziński, 2015. "A Note on Estimation in Hilbertian Linear Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(1), pages 43-62, March.
  • Handle: RePEc:bla:scjsta:v:42:y:2015:i:1:p:43-62
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/sjos.12094
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cardot, Hervé & Johannes, Jan, 2010. "Thresholding projection estimators in functional linear models," Journal of Multivariate Analysis, Elsevier, vol. 101(2), pages 395-408, February.
    2. Cardot, Hervé & Ferraty, Frédéric & Sarda, Pascal, 1999. "Functional linear model," Statistics & Probability Letters, Elsevier, vol. 45(1), pages 11-22, October.
    3. Li, Yehua & Hsing, Tailen, 2007. "On rates of convergence in functional linear regression," Journal of Multivariate Analysis, Elsevier, vol. 98(9), pages 1782-1804, October.
    4. Reiss, Philip T. & Ogden, R. Todd, 2007. "Functional Principal Component Regression and Functional Partial Least Squares," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 984-996, September.
    5. Febrero-Bande, Manuel & Galeano, Pedro & González-Manteiga, Wenceslao, 2010. "Measures of influence for the functional linear model with scalar response," Journal of Multivariate Analysis, Elsevier, vol. 101(2), pages 327-339, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Petrovich, Justin & Reimherr, Matthew, 2017. "Asymptotic properties of principal component projections with repeated eigenvalues," Statistics & Probability Letters, Elsevier, vol. 130(C), pages 42-48.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manuel Febrero-Bande & Pedro Galeano & Wenceslao González-Manteiga, 2017. "Functional Principal Component Regression and Functional Partial Least-squares Regression: An Overview and a Comparative Study," International Statistical Review, International Statistical Institute, vol. 85(1), pages 61-83, April.
    2. Kalogridis, Ioannis & Van Aelst, Stefan, 2023. "Robust penalized estimators for functional linear regression," Journal of Multivariate Analysis, Elsevier, vol. 194(C).
    3. Kalogridis, Ioannis & Van Aelst, Stefan, 2019. "Robust functional regression based on principal components," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 393-415.
    4. Imaizumi, Masaaki & Kato, Kengo, 2018. "PCA-based estimation for functional linear regression with functional responses," Journal of Multivariate Analysis, Elsevier, vol. 163(C), pages 15-36.
    5. Brunel, Élodie & Mas, André & Roche, Angelina, 2016. "Non-asymptotic adaptive prediction in functional linear models," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 208-232.
    6. Febrero-Bande, Manuel & Galeano, Pedro & González-Manteiga, Wenceslao, 2019. "Estimation, imputation and prediction for the functional linear model with scalar response with responses missing at random," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 91-103.
    7. Hörmann, Siegfried & Jammoul, Fatima, 2023. "Prediction in functional regression with discretely observed and noisy covariates," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).
    8. Lakraj, Gamage Pemantha & Ruymgaart, Frits, 2017. "Some asymptotic theory for Silverman’s smoothed functional principal components in an abstract Hilbert space," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 122-132.
    9. Qi, Xin & Luo, Ruiyan, 2018. "Function-on-function regression with thousands of predictive curves," Journal of Multivariate Analysis, Elsevier, vol. 163(C), pages 51-66.
    10. Jianjun Zhou & Zhao Chen & Qingyan Peng, 2016. "Polynomial spline estimation for partial functional linear regression models," Computational Statistics, Springer, vol. 31(3), pages 1107-1129, September.
    11. Han Shang, 2014. "A survey of functional principal component analysis," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 98(2), pages 121-142, April.
    12. Zhou, Jianjun & Chen, Min, 2012. "Spline estimators for semi-functional linear model," Statistics & Probability Letters, Elsevier, vol. 82(3), pages 505-513.
    13. Philip T. Reiss & Jeff Goldsmith & Han Lin Shang & R. Todd Ogden, 2017. "Methods for Scalar-on-Function Regression," International Statistical Review, International Statistical Institute, vol. 85(2), pages 228-249, August.
    14. Mareike Bereswill & Jan Johannes, 2013. "On the effect of noisy measurements of the regressor in functional linear models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(3), pages 488-513, September.
    15. Chen, Xuerong & Li, Haoqi & Liang, Hua & Lin, Huazhen, 2019. "Functional response regression analysis," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 218-233.
    16. Lee, Eun Ryung & Park, Byeong U., 2012. "Sparse estimation in functional linear regression," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 1-17.
    17. Luo, Ruiyan & Qi, Xin, 2015. "Sparse wavelet regression with multiple predictive curves," Journal of Multivariate Analysis, Elsevier, vol. 134(C), pages 33-49.
    18. Peter Hall & Giles Hooker, 2016. "Truncated linear models for functional data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(3), pages 637-653, June.
    19. Mark J. Meyer & Brent A. Coull & Francesco Versace & Paul Cinciripini & Jeffrey S. Morris, 2015. "Bayesian function‐on‐function regression for multilevel functional data," Biometrics, The International Biometric Society, vol. 71(3), pages 563-574, September.
    20. Mousavi, Seyed Nourollah & Sørensen, Helle, 2017. "Multinomial functional regression with wavelets and LASSO penalization," Econometrics and Statistics, Elsevier, vol. 1(C), pages 150-166.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:42:y:2015:i:1:p:43-62. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.