IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v133y2015icp61-76.html
   My bibliography  Save this article

Asymptotic normality in the maximum entropy models on graphs with an increasing number of parameters

Author

Listed:
  • Yan, Ting
  • Zhao, Yunpeng
  • Qin, Hong

Abstract

Maximum entropy models, motivated by applications in neuron science, are natural generalizations of the β-model to weighted graphs. Similar to the β-model, each vertex in maximum entropy models is assigned a potential parameter, and the degree sequence is the natural sufficient statistic. Hillar and Wibisono (2013) have proved the consistency of the maximum likelihood estimators. In this paper, we further establish the asymptotic normality for any finite number of the maximum likelihood estimators in the maximum entropy models with three types of edge weights, when the total number of parameters goes to infinity. Simulation studies are provided to illustrate the asymptotic results.

Suggested Citation

  • Yan, Ting & Zhao, Yunpeng & Qin, Hong, 2015. "Asymptotic normality in the maximum entropy models on graphs with an increasing number of parameters," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 61-76.
  • Handle: RePEc:eee:jmvana:v:133:y:2015:i:c:p:61-76
    DOI: 10.1016/j.jmva.2014.08.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X14001961
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2014.08.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Ximing, 2003. "Calculation of maximum entropy densities with application to income distribution," Journal of Econometrics, Elsevier, vol. 115(2), pages 347-354, August.
    2. Ting Yan & Jinfeng Xu, 2013. "A central limit theorem in the β-model for undirected random graphs with a diverging number of vertices," Biometrika, Biometrika Trust, vol. 100(2), pages 519-524.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiuping Wang & Yuan Zhang & Ting Yan, 2023. "Asymptotic theory in network models with covariates and a growing number of node parameters," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(2), pages 369-392, April.
    2. Han, Ruijian & Chen, Kani & Tan, Chunxi, 2020. "Bivariate gamma model," Journal of Multivariate Analysis, Elsevier, vol. 180(C).
    3. Jing Luo & Haoyu Wei & Xiaoyu Lei & Jiaxin Guo, 2021. "Asymptotic in a class of network models with an increasing sub-Gamma degree sequence," Papers 2111.01301, arXiv.org, revised Nov 2023.
    4. Zhao, Yunpeng, 2022. "Network inference from temporally dependent grouped observations," Computational Statistics & Data Analysis, Elsevier, vol. 171(C).
    5. Yan, Ting, 2015. "A note on asymptotic distributions in maximum entropy models for networks," Statistics & Probability Letters, Elsevier, vol. 98(C), pages 1-5.
    6. Jing Luo & Tour Liu & Qiuping Wang, 2022. "Affiliation weighted networks with a differentially private degree sequence," Statistical Papers, Springer, vol. 63(2), pages 367-395, April.
    7. Yong, Zhang & Chen, Siyu & Qin, Hong & Yan, Ting, 2016. "Directed weighted random graphs with an increasing bi-degree sequence," Statistics & Probability Letters, Elsevier, vol. 119(C), pages 235-240.
    8. Yan, Ting & Zhao, Yunpeng, 2016. "Asymptotics of score test in the generalized β-model for networks," Statistics & Probability Letters, Elsevier, vol. 119(C), pages 163-169.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tanaka, Ken'ichiro & Toda, Alexis Akira, 2015. "Discretizing Distributions with Exact Moments: Error Estimate and Convergence Analysis," University of California at San Diego, Economics Working Paper Series qt7g23r5kh, Department of Economics, UC San Diego.
    2. Wu, Ximing & Perloff, Jeffrey M., 2004. "China's Income Distribution Over Time: Reasons for Rising Inequality," Institute for Research on Labor and Employment, Working Paper Series qt9jw2v939, Institute of Industrial Relations, UC Berkeley.
    3. Bryan S. Graham, 2017. "An econometric model of network formation with degree heterogeneity," CeMMAP working papers 08/17, Institute for Fiscal Studies.
    4. Carol Alexander & Jose Maria Sarabia, 2010. "Endogenizing Model Risk to Quantile Estimates," ICMA Centre Discussion Papers in Finance icma-dp2010-07, Henley Business School, University of Reading.
    5. Áureo de Paula, 2015. "Econometrics of network models," CeMMAP working papers CWP52/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    6. Cristiano Varin & Manuela Cattelan & David Firth, 2016. "Statistical modelling of citation exchange between statistics journals," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 179(1), pages 1-63, January.
    7. Ximing Wu & Andreas Savvides & Thanasis Stengos, 2008. "The Global Joint Distribution of Income and Health," Working Papers 0807, University of Guelph, Department of Economics and Finance.
    8. Sung Y. Park & Anil K. Bera, 2018. "Information theoretic approaches to income density estimation with an application to the U.S. income data," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 16(4), pages 461-486, December.
    9. Rompolis, Leonidas S., 2010. "Retrieving risk neutral densities from European option prices based on the principle of maximum entropy," Journal of Empirical Finance, Elsevier, vol. 17(5), pages 918-937, December.
    10. Koen Jochmans & Martin Weidner, 2019. "Fixed‐Effect Regressions on Network Data," Econometrica, Econometric Society, vol. 87(5), pages 1543-1560, September.
    11. Qiuping Wang & Yuan Zhang & Ting Yan, 2023. "Asymptotic theory in network models with covariates and a growing number of node parameters," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(2), pages 369-392, April.
    12. Ma, Shujie & Su, Liangjun & Zhang, Yichong, 2020. "Detecting Latent Communities in Network Formation Models," Economics and Statistics Working Papers 12-2020, Singapore Management University, School of Economics.
    13. Gao, Wayne Yuan & Li, Ming & Xu, Sheng, 2023. "Logical differencing in dyadic network formation models with nontransferable utilities," Journal of Econometrics, Elsevier, vol. 235(1), pages 302-324.
    14. Yiguo Sun & Thanasis Stengos, 2008. "The absolute health income hypothesis revisited: a semiparametric quantile regression approach," Empirical Economics, Springer, vol. 35(2), pages 395-412, September.
    15. Chan, Felix, 2009. "Modelling time-varying higher moments with maximum entropy density," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(9), pages 2767-2778.
    16. Ximing Wu & Thanasis Stengos, 2005. "Partially adaptive estimation via the maximum entropy densities," Econometrics Journal, Royal Economic Society, vol. 8(3), pages 352-366, December.
    17. Áureo de Paula, 2020. "Econometric Models of Network Formation," Annual Review of Economics, Annual Reviews, vol. 12(1), pages 775-799, August.
    18. Sylvia J. Soltyk & Felix Chan, 2023. "Modeling time‐varying higher‐order conditional moments: A survey," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 33-57, February.
    19. Wu, Ximing & Perloff, Jeffrey M., 2007. "Information-Theoretic Deconvolution Approximation of Treatment Effect Distribution," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt9vd036zx, Department of Agricultural & Resource Economics, UC Berkeley.
    20. repec:hal:wpspec:info:hdl:2441/dpido2upv86tqc7td18fd2mna is not listed on IDEAS
    21. Han, Ruijian & Chen, Kani & Tan, Chunxi, 2020. "Bivariate gamma model," Journal of Multivariate Analysis, Elsevier, vol. 180(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:133:y:2015:i:c:p:61-76. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.