IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2111.01301.html
   My bibliography  Save this paper

Asymptotic in a class of network models with an increasing sub-Gamma degree sequence

Author

Listed:
  • Jing Luo
  • Haoyu Wei
  • Xiaoyu Lei
  • Jiaxin Guo

Abstract

For the differential privacy under the sub-Gamma noise, we derive the asymptotic properties of a class of network models with binary values with a general link function. In this paper, we release the degree sequences of the binary networks under a general noisy mechanism with the discrete Laplace mechanism as a special case. We establish the asymptotic result including both consistency and asymptotically normality of the parameter estimator when the number of parameters goes to infinity in a class of network models. Simulations and a real data example are provided to illustrate asymptotic results.

Suggested Citation

  • Jing Luo & Haoyu Wei & Xiaoyu Lei & Jiaxin Guo, 2021. "Asymptotic in a class of network models with an increasing sub-Gamma degree sequence," Papers 2111.01301, arXiv.org, revised Nov 2023.
  • Handle: RePEc:arx:papers:2111.01301
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2111.01301
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lu Pan & Ting Yan, 2020. "Asymptotics in the β-model for networks with a differentially private degree sequence," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 49(18), pages 4378-4393, September.
    2. Zhang, Huiming & Liu, Yunxiao & Li, Bo, 2014. "Notes on discrete compound Poisson model with applications to risk theory," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 325-336.
    3. Karl Mosler, 2017. "Ernesto Estrada and Philip A. Knight (2015): A First Course in Network Theory, Oxford University Press, 272 pp., £29.99, ISBN 9780198726463," Statistical Papers, Springer, vol. 58(4), pages 1283-1284, December.
    4. Yan, Ting & Zhao, Yunpeng & Qin, Hong, 2015. "Asymptotic normality in the maximum entropy models on graphs with an increasing number of parameters," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 61-76.
    5. Huiming Zhang & Bo Li, 2016. "Characterizations of discrete compound Poisson distributions," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 45(22), pages 6789-6802, November.
    6. Ting Yan & Binyan Jiang & Stephen E. Fienberg & Chenlei Leng, 2019. "Statistical Inference in a Directed Network Model With Covariates," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 857-868, April.
    7. Ting Yan & Jinfeng Xu, 2013. "A central limit theorem in the β-model for undirected random graphs with a diverging number of vertices," Biometrika, Biometrika Trust, vol. 100(2), pages 519-524.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiuping Wang & Yuan Zhang & Ting Yan, 2023. "Asymptotic theory in network models with covariates and a growing number of node parameters," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(2), pages 369-392, April.
    2. Jing Luo & Tour Liu & Qiuping Wang, 2022. "Affiliation weighted networks with a differentially private degree sequence," Statistical Papers, Springer, vol. 63(2), pages 367-395, April.
    3. Yong, Zhang & Chen, Siyu & Qin, Hong & Yan, Ting, 2016. "Directed weighted random graphs with an increasing bi-degree sequence," Statistics & Probability Letters, Elsevier, vol. 119(C), pages 235-240.
    4. Yan, Ting & Zhao, Yunpeng, 2016. "Asymptotics of score test in the generalized β-model for networks," Statistics & Probability Letters, Elsevier, vol. 119(C), pages 163-169.
    5. Áureo de Paula, 2020. "Econometric Models of Network Formation," Annual Review of Economics, Annual Reviews, vol. 12(1), pages 775-799, August.
    6. Ma, Shujie & Su, Liangjun & Zhang, Yichong, 2020. "Detecting Latent Communities in Network Formation Models," Economics and Statistics Working Papers 12-2020, Singapore Management University, School of Economics.
    7. Gao, Wayne Yuan & Li, Ming & Xu, Sheng, 2023. "Logical differencing in dyadic network formation models with nontransferable utilities," Journal of Econometrics, Elsevier, vol. 235(1), pages 302-324.
    8. Han, Ruijian & Chen, Kani & Tan, Chunxi, 2020. "Bivariate gamma model," Journal of Multivariate Analysis, Elsevier, vol. 180(C).
    9. Mingli Chen & Kengo Kato & Chenlei Leng, 2021. "Analysis of networks via the sparse β‐model," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(5), pages 887-910, November.
    10. Zhao, Yunpeng, 2022. "Network inference from temporally dependent grouped observations," Computational Statistics & Data Analysis, Elsevier, vol. 171(C).
    11. Yan, Ting, 2015. "A note on asymptotic distributions in maximum entropy models for networks," Statistics & Probability Letters, Elsevier, vol. 98(C), pages 1-5.
    12. Bryan S. Graham, 2017. "An econometric model of network formation with degree heterogeneity," CeMMAP working papers 08/17, Institute for Fiscal Studies.
    13. Áureo de Paula, 2015. "Econometrics of network models," CeMMAP working papers CWP52/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    14. Chen, Mingli & Fernández-Val, Iván & Weidner, Martin, 2021. "Nonlinear factor models for network and panel data," Journal of Econometrics, Elsevier, vol. 220(2), pages 296-324.
    15. Cristiano Varin & Manuela Cattelan & David Firth, 2016. "Statistical modelling of citation exchange between statistics journals," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 179(1), pages 1-63, January.
    16. David W. Hughes, 2021. "Estimating Nonlinear Network Data Models with Fixed Effects," Boston College Working Papers in Economics 1058, Boston College Department of Economics.
    17. Khartov, A.A., 2019. "Compactness criteria for quasi-infinitely divisible distributions on the integers," Statistics & Probability Letters, Elsevier, vol. 153(C), pages 1-6.
    18. Koen Jochmans, 2018. "Semiparametric Analysis of Network Formation," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(4), pages 705-713, October.
    19. Jun Liu & Jiangzhou Wang & Binghui Liu, 2020. "Community Detection of Multi-Layer Attributed Networks via Penalized Alternating Factorization," Mathematics, MDPI, vol. 8(2), pages 1-20, February.
    20. Koen Jochmans & Martin Weidner, 2019. "Fixed‐Effect Regressions on Network Data," Econometrica, Econometric Society, vol. 87(5), pages 1543-1560, September.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2111.01301. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.