IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v119y2016icp235-240.html
   My bibliography  Save this article

Directed weighted random graphs with an increasing bi-degree sequence

Author

Listed:
  • Yong, Zhang
  • Chen, Siyu
  • Qin, Hong
  • Yan, Ting

Abstract

In this paper, we derive the consistency and asymptotic normality of the maximum likelihood estimator in the directed exponential random graph model with an increasing bi-degree sequence when the edges take finite discrete weight.

Suggested Citation

  • Yong, Zhang & Chen, Siyu & Qin, Hong & Yan, Ting, 2016. "Directed weighted random graphs with an increasing bi-degree sequence," Statistics & Probability Letters, Elsevier, vol. 119(C), pages 235-240.
  • Handle: RePEc:eee:stapro:v:119:y:2016:i:c:p:235-240
    DOI: 10.1016/j.spl.2016.08.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715216301523
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2016.08.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yan, Ting, 2015. "A note on asymptotic distributions in maximum entropy models for networks," Statistics & Probability Letters, Elsevier, vol. 98(C), pages 1-5.
    2. Yan, Ting & Zhao, Yunpeng & Qin, Hong, 2015. "Asymptotic normality in the maximum entropy models on graphs with an increasing number of parameters," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 61-76.
    3. Ting Yan & Jinfeng Xu, 2013. "A central limit theorem in the β-model for undirected random graphs with a diverging number of vertices," Biometrika, Biometrika Trust, vol. 100(2), pages 519-524.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jing Luo & Tour Liu & Qiuping Wang, 2022. "Affiliation weighted networks with a differentially private degree sequence," Statistical Papers, Springer, vol. 63(2), pages 367-395, April.
    2. Mingli Chen & Kengo Kato & Chenlei Leng, 2021. "Analysis of networks via the sparse β‐model," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(5), pages 887-910, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiuping Wang & Yuan Zhang & Ting Yan, 2023. "Asymptotic theory in network models with covariates and a growing number of node parameters," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(2), pages 369-392, April.
    2. Han, Ruijian & Chen, Kani & Tan, Chunxi, 2020. "Bivariate gamma model," Journal of Multivariate Analysis, Elsevier, vol. 180(C).
    3. Su, Liju & Qian, Xiaodi & Yan, Ting, 2018. "A note on a network model with degree heterogeneity and homophily," Statistics & Probability Letters, Elsevier, vol. 138(C), pages 27-30.
    4. Yan, Ting & Zhao, Yunpeng, 2016. "Asymptotics of score test in the generalized β-model for networks," Statistics & Probability Letters, Elsevier, vol. 119(C), pages 163-169.
    5. Jing Luo & Haoyu Wei & Xiaoyu Lei & Jiaxin Guo, 2021. "Asymptotic in a class of network models with an increasing sub-Gamma degree sequence," Papers 2111.01301, arXiv.org, revised Nov 2023.
    6. Zhao, Yunpeng, 2022. "Network inference from temporally dependent grouped observations," Computational Statistics & Data Analysis, Elsevier, vol. 171(C).
    7. Jing Luo & Tour Liu & Qiuping Wang, 2022. "Affiliation weighted networks with a differentially private degree sequence," Statistical Papers, Springer, vol. 63(2), pages 367-395, April.
    8. Yan, Ting, 2015. "A note on asymptotic distributions in maximum entropy models for networks," Statistics & Probability Letters, Elsevier, vol. 98(C), pages 1-5.
    9. Bryan S. Graham, 2017. "An econometric model of network formation with degree heterogeneity," CeMMAP working papers 08/17, Institute for Fiscal Studies.
    10. Áureo de Paula, 2015. "Econometrics of network models," CeMMAP working papers CWP52/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    11. Cristiano Varin & Manuela Cattelan & David Firth, 2016. "Statistical modelling of citation exchange between statistics journals," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 179(1), pages 1-63, January.
    12. Koen Jochmans & Martin Weidner, 2019. "Fixed‐Effect Regressions on Network Data," Econometrica, Econometric Society, vol. 87(5), pages 1543-1560, September.
    13. Ma, Shujie & Su, Liangjun & Zhang, Yichong, 2020. "Detecting Latent Communities in Network Formation Models," Economics and Statistics Working Papers 12-2020, Singapore Management University, School of Economics.
    14. Gao, Wayne Yuan & Li, Ming & Xu, Sheng, 2023. "Logical differencing in dyadic network formation models with nontransferable utilities," Journal of Econometrics, Elsevier, vol. 235(1), pages 302-324.
    15. Áureo de Paula, 2020. "Econometric Models of Network Formation," Annual Review of Economics, Annual Reviews, vol. 12(1), pages 775-799, August.
    16. repec:hal:wpspec:info:hdl:2441/dpido2upv86tqc7td18fd2mna is not listed on IDEAS
    17. Bryan S. Graham, 2017. "An Econometric Model of Network Formation With Degree Heterogeneity," Econometrica, Econometric Society, vol. 85, pages 1033-1063, July.
    18. Mingli Chen & Kengo Kato & Chenlei Leng, 2021. "Analysis of networks via the sparse β‐model," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(5), pages 887-910, November.
    19. Koen Jochmans, 2018. "Semiparametric Analysis of Network Formation," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(4), pages 705-713, October.
    20. Anna Malinovskaya & Philipp Otto, 2021. "Online network monitoring," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(5), pages 1337-1364, December.
    21. Bryan S. Graham, 2014. "An econometric model of link formation with degree heterogeneity," NBER Working Papers 20341, National Bureau of Economic Research, Inc.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:119:y:2016:i:c:p:235-240. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.