Lancaster bivariate probability distributions with Poisson, negative binomial and gamma margins
Author
Abstract
Suggested Citation
DOI: 10.1007/BF02565104
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Tyan, S. & Thomas, J. B., 1975. "Characterization of a class of bivariate distribution functions," Journal of Multivariate Analysis, Elsevier, vol. 5(2), pages 227-235, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Papadatos, Nickos, 2014. "Some counterexamples concerning maximal correlation and linear regression," Journal of Multivariate Analysis, Elsevier, vol. 126(C), pages 114-117.
- Pierre-Olivier Goffard & Stéphane Loisel & Denys Pommeret, 2017. "Polynomial Approximations for Bivariate Aggregate Claims Amount Probability Distributions," Methodology and Computing in Applied Probability, Springer, vol. 19(1), pages 151-174, March.
- Papadatos, Nickos & Xifara, Tatiana, 2013. "A simple method for obtaining the maximal correlation coefficient and related characterizations," Journal of Multivariate Analysis, Elsevier, vol. 118(C), pages 102-114.
- Hugo Brango & Angie Guerrero & Humberto Llinás, 2024. "Marshall–Olkin Bivariate Weibull Model with Modified Singularity (MOBW- μ ): A Study of Its Properties and Correlation Structure," Mathematics, MDPI, vol. 12(14), pages 1-16, July.
- Dueck, Johannes & Edelmann, Dominic & Richards, Donald, 2017. "Distance correlation coefficients for Lancaster distributions," Journal of Multivariate Analysis, Elsevier, vol. 154(C), pages 19-39.
- Chen, Xiongzhi, 2020. "A strong law of large numbers for simultaneously testing parameters of Lancaster bivariate distributions," Statistics & Probability Letters, Elsevier, vol. 167(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- López Blázquez, F. & Salamanca Miño, B., 2014. "Maximal correlation in a non-diagonal case," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 265-278.
More about this item
Keywords
Lancaster probabilities; marginal distributions; orthogonal polynomials; extreme points of convex sets; moment sequences; 60-xx;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:7:y:1998:i:1:p:95-110. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.