IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v167y2020ics0167715220302145.html
   My bibliography  Save this article

A strong law of large numbers for simultaneously testing parameters of Lancaster bivariate distributions

Author

Listed:
  • Chen, Xiongzhi

Abstract

We prove a strong law of large numbers for simultaneously testing parameters of a large number of dependent, Lancaster bivariate random variables with infinite supports, and discuss its implications.

Suggested Citation

  • Chen, Xiongzhi, 2020. "A strong law of large numbers for simultaneously testing parameters of Lancaster bivariate distributions," Statistics & Probability Letters, Elsevier, vol. 167(C).
  • Handle: RePEc:eee:stapro:v:167:y:2020:i:c:s0167715220302145
    DOI: 10.1016/j.spl.2020.108911
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715220302145
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2020.108911?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Art B. Owen, 2005. "Variance of the number of false discoveries," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(3), pages 411-426, June.
    2. Armin Schwartzman & Xihong Lin, 2011. "The effect of correlation in false discovery rate estimation," Biometrika, Biometrika Trust, vol. 98(1), pages 199-214.
    3. Chen, Xiongzhi & Doerge, R.W., 2020. "A strong law of large numbers related to multiple testing normal means," Statistics & Probability Letters, Elsevier, vol. 159(C).
    4. Angelo Koudou, 1998. "Lancaster bivariate probability distributions with Poisson, negative binomial and gamma margins," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 7(1), pages 95-110, June.
    5. Chen, Xiongzhi, 2019. "Uniformly consistently estimating the proportion of false null hypotheses via Lebesgue–Stieltjes integral equations," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 724-744.
    6. John D. Storey & Jonathan E. Taylor & David Siegmund, 2004. "Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: a unified approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(1), pages 187-205, February.
    7. David Azriel & Armin Schwartzman, 2015. "The Empirical Distribution of a Large Number of Correlated Normal Variables," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 1217-1228, September.
    8. Alessio Farcomeni, 2007. "Some Results on the Control of the False Discovery Rate under Dependence," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 34(2), pages 275-297, June.
    9. Gontscharuk, Veronika & Finner, Helmut, 2013. "Asymptotic FDR control under weak dependence: A counterexample," Statistics & Probability Letters, Elsevier, vol. 83(8), pages 1888-1893.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Xiongzhi & Doerge, R.W., 2020. "A strong law of large numbers related to multiple testing normal means," Statistics & Probability Letters, Elsevier, vol. 159(C).
    2. Jianqing Fan & Xu Han, 2017. "Estimation of the false discovery proportion with unknown dependence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(4), pages 1143-1164, September.
    3. Dean Palejev & Mladen Savov, 2021. "On the Convergence of the Benjamini–Hochberg Procedure," Mathematics, MDPI, vol. 9(17), pages 1-19, September.
    4. Sairam Rayaprolu & Zhiyi Chi, 2021. "False Discovery Variance Reduction in Large Scale Simultaneous Hypothesis Tests," Methodology and Computing in Applied Probability, Springer, vol. 23(3), pages 711-733, September.
    5. Ghosh Debashis, 2012. "Incorporating the Empirical Null Hypothesis into the Benjamini-Hochberg Procedure," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(4), pages 1-21, July.
    6. de Uña-Alvarez Jacobo, 2011. "On the Statistical Properties of SGoF Multitesting Method," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-30, April.
    7. Andrew Y. Chen & Tom Zimmermann, 2022. "Publication Bias in Asset Pricing Research," Papers 2209.13623, arXiv.org, revised Sep 2023.
    8. Gordon, Alexander & Chen, Linlin & Glazko, Galina & Yakovlev, Andrei, 2009. "Balancing type one and two errors in multiple testing for differential expression of genes," Computational Statistics & Data Analysis, Elsevier, vol. 53(5), pages 1622-1629, March.
    9. Leek Jeffrey T & Storey John D., 2011. "The Joint Null Criterion for Multiple Hypothesis Tests," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-22, June.
    10. Gontscharuk, Veronika & Finner, Helmut, 2013. "Asymptotic FDR control under weak dependence: A counterexample," Statistics & Probability Letters, Elsevier, vol. 83(8), pages 1888-1893.
    11. de Uña-Alvarez Jacobo, 2012. "The Beta-Binomial SGoF method for multiple dependent tests," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(3), pages 1-32, May.
    12. T. Tony Cai & Weidong Liu, 2016. "Large-Scale Multiple Testing of Correlations," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 229-240, March.
    13. Wenguang Sun & T. Tony Cai, 2009. "Large‐scale multiple testing under dependence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 393-424, April.
    14. Alessio Farcomeni, 2009. "Generalized Augmentation to Control the False Discovery Exceedance in Multiple Testing," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(3), pages 501-517, September.
    15. Bajgrowicz, Pierre & Scaillet, Olivier, 2012. "Technical trading revisited: False discoveries, persistence tests, and transaction costs," Journal of Financial Economics, Elsevier, vol. 106(3), pages 473-491.
    16. Can Shao & Jun Li & Ying Cheng, 2016. "Detection of Test Speededness Using Change-Point Analysis," Psychometrika, Springer;The Psychometric Society, vol. 81(4), pages 1118-1141, December.
    17. Wang, Jiangzhou & Cui, Tingting & Zhu, Wensheng & Wang, Pengfei, 2023. "Covariate-modulated large-scale multiple testing under dependence," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).
    18. Anh-Tuan Hoang & Thorsten Dickhaus, 2022. "On the usage of randomized p-values in the Schweder–Spjøtvoll estimator," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(2), pages 289-319, April.
    19. Wang, Xia & Shojaie, Ali & Zou, Jian, 2019. "Bayesian hidden Markov models for dependent large-scale multiple testing," Computational Statistics & Data Analysis, Elsevier, vol. 136(C), pages 123-136.
    20. Shigeyuki Matsui & Hisashi Noma, 2011. "Estimating Effect Sizes of Differentially Expressed Genes for Power and Sample-Size Assessments in Microarray Experiments," Biometrics, The International Biometric Society, vol. 67(4), pages 1225-1235, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:167:y:2020:i:c:s0167715220302145. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.