IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v115y2013icp57-67.html
   My bibliography  Save this article

ANOVA kernels and RKHS of zero mean functions for model-based sensitivity analysis

Author

Listed:
  • Durrande, N.
  • Ginsbourger, D.
  • Roustant, O.
  • Carraro, L.

Abstract

Given a reproducing kernel Hilbert space (H,〈.,.〉) of real-valued functions and a suitable measure μ over the source space D⊂R, we decompose H as the sum of a subspace of centered functions for μ and its orthogonal in H. This decomposition leads to a special case of ANOVA kernels, for which the functional ANOVA representation of the best predictor can be elegantly derived, either in an interpolation or regularization framework. The proposed kernels appear to be particularly convenient for analyzing the effect of each (group of) variable(s) and computing sensitivity indices without recursivity.

Suggested Citation

  • Durrande, N. & Ginsbourger, D. & Roustant, O. & Carraro, L., 2013. "ANOVA kernels and RKHS of zero mean functions for model-based sensitivity analysis," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 57-67.
  • Handle: RePEc:eee:jmvana:v:115:y:2013:i:c:p:57-67
    DOI: 10.1016/j.jmva.2012.08.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X1200214X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2012.08.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marrel, Amandine & Iooss, Bertrand & Laurent, Béatrice & Roustant, Olivier, 2009. "Calculations of Sobol indices for the Gaussian process metamodel," Reliability Engineering and System Safety, Elsevier, vol. 94(3), pages 742-751.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Emanuele Borgonovo & Elmar Plischke & Giovanni Rabitti, 2022. "Interactions and computer experiments," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(3), pages 1274-1303, September.
    2. Pronzato, Luc, 2019. "Sensitivity analysis via Karhunen–Loève expansion of a random field model: Estimation of Sobol’ indices and experimental design," Reliability Engineering and System Safety, Elsevier, vol. 187(C), pages 93-109.
    3. Xuefei Lu & Alessandro Rudi & Emanuele Borgonovo & Lorenzo Rosasco, 2020. "Faster Kriging: Facing High-Dimensional Simulators," Operations Research, INFORMS, vol. 68(1), pages 233-249, January.
    4. Heredia, María Belén & Prieur, Clémentine & Eckert, Nicolas, 2021. "Nonparametric estimation of aggregated Sobol’ indices: Application to a depth averaged snow avalanche model," Reliability Engineering and System Safety, Elsevier, vol. 212(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tobias Fissler & Silvana M. Pesenti, 2022. "Sensitivity Measures Based on Scoring Functions," Papers 2203.00460, arXiv.org, revised Jul 2022.
    2. Shang, Xiaobing & Su, Li & Fang, Hai & Zeng, Bowen & Zhang, Zhi, 2023. "An efficient multi-fidelity Kriging surrogate model-based method for global sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    3. Xuefei Lu & Alessandro Rudi & Emanuele Borgonovo & Lorenzo Rosasco, 2020. "Faster Kriging: Facing High-Dimensional Simulators," Operations Research, INFORMS, vol. 68(1), pages 233-249, January.
    4. López-Lopera, Andrés F. & Idier, Déborah & Rohmer, Jérémy & Bachoc, François, 2022. "Multioutput Gaussian processes with functional data: A study on coastal flood hazard assessment," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    5. Zio, E. & Pedroni, N., 2012. "Monte Carlo simulation-based sensitivity analysis of the model of a thermal–hydraulic passive system," Reliability Engineering and System Safety, Elsevier, vol. 107(C), pages 90-106.
    6. Lambert, Romain S.C. & Lemke, Frank & Kucherenko, Sergei S. & Song, Shufang & Shah, Nilay, 2016. "Global sensitivity analysis using sparse high dimensional model representations generated by the group method of data handling," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 128(C), pages 42-54.
    7. Deman, G. & Konakli, K. & Sudret, B. & Kerrou, J. & Perrochet, P. & Benabderrahmane, H., 2016. "Using sparse polynomial chaos expansions for the global sensitivity analysis of groundwater lifetime expectancy in a multi-layered hydrogeological model," Reliability Engineering and System Safety, Elsevier, vol. 147(C), pages 156-169.
    8. Pronzato, Luc, 2019. "Sensitivity analysis via Karhunen–Loève expansion of a random field model: Estimation of Sobol’ indices and experimental design," Reliability Engineering and System Safety, Elsevier, vol. 187(C), pages 93-109.
    9. Kucherenko, S. & Song, S., 2017. "Different numerical estimators for main effect global sensitivity indices," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 222-238.
    10. Liu, Yaning & Yousuff Hussaini, M. & Ökten, Giray, 2016. "Accurate construction of high dimensional model representation with applications to uncertainty quantification," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 281-295.
    11. Chen, Gaolin & Zhou, Shuming & Li, Min & Zhang, Hong, 2022. "Evaluation of community vulnerability based on communicability and structural dissimilarity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    12. Wu, Xu & Kozlowski, Tomasz & Meidani, Hadi, 2018. "Kriging-based inverse uncertainty quantification of nuclear fuel performance code BISON fission gas release model using time series measurement data," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 422-436.
    13. Marrel, Amandine & Chabridon, Vincent, 2021. "Statistical developments for target and conditional sensitivity analysis: Application on safety studies for nuclear reactor," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    14. Zio, E. & Pedroni, N., 2009. "Functional failure analysis of a thermal–hydraulic passive system by means of Line Sampling," Reliability Engineering and System Safety, Elsevier, vol. 94(11), pages 1764-1781.
    15. Azzini, Ivano & Rosati, Rossana, 2021. "Sobol’ main effect index: an Innovative Algorithm (IA) using Dynamic Adaptive Variances," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    16. Heredia, María Belén & Prieur, Clémentine & Eckert, Nicolas, 2021. "Nonparametric estimation of aggregated Sobol’ indices: Application to a depth averaged snow avalanche model," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    17. Kucherenko, S. & Delpuech, B. & Iooss, B. & Tarantola, S., 2015. "Application of the control variate technique to estimation of total sensitivity indices," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 251-259.
    18. Roustant, O. & Fruth, J. & Iooss, B. & Kuhnt, S., 2014. "Crossed-derivative based sensitivity measures for interaction screening," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 105(C), pages 105-118.
    19. Steiner, M. & Bourinet, J.-M. & Lahmer, T., 2019. "An adaptive sampling method for global sensitivity analysis based on least-squares support vector regression," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 323-340.
    20. Geoffrey Fairchild & Kyle S. Hickmann & Susan M. Mniszewski & Sara Y. Del Valle & James M. Hyman, 2014. "Optimizing human activity patterns using global sensitivity analysis," Computational and Mathematical Organization Theory, Springer, vol. 20(4), pages 394-416, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:115:y:2013:i:c:p:57-67. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.