IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v111y2012icp94-109.html
   My bibliography  Save this article

A combined beta and normal random-effects model for repeated, overdispersed binary and binomial data

Author

Listed:
  • Molenberghs, Geert
  • Verbeke, Geert
  • Iddi, Samuel
  • Demétrio, Clarice G.B.

Abstract

Non-Gaussian outcomes are often modeled using members of the so-called exponential family. Notorious members are the Bernoulli model for binary data, leading to logistic regression, and the Poisson model for count data, leading to Poisson regression. Two of the main reasons for extending this family are (1) the occurrence of overdispersion, meaning that the variability in the data is not adequately described by the models, which often exhibit a prescribed mean-variance link, and (2) the accommodation of hierarchical structure in the data, stemming from clustering in the data which, in turn, may result from repeatedly measuring the outcome, for various members of the same family, etc. The first issue is dealt with through a variety of overdispersion models, such as, for example, the beta-binomial model for grouped binary data and the negative-binomial model for counts. Clustering is often accommodated through the inclusion of random subject-specific effects. Though not always, one conventionally assumes such random effects to be normally distributed. While both of these phenomena may occur simultaneously, models combining them are uncommon. This paper starts from the broad class of generalized linear models accommodating overdispersion and clustering through two separate sets of random effects. We place particular emphasis on so-called conjugate random effects at the level of the mean for the first aspect and normal random effects embedded within the linear predictor for the second aspect, even though our family is more general. The binary and binomial cases are our focus. Apart from model formulation, we present an overview of estimation methods, and then settle for maximum likelihood estimation with analytic-numerical integration. The methodology is applied to two datasets of which the outcomes are binary and binomial, respectively.

Suggested Citation

  • Molenberghs, Geert & Verbeke, Geert & Iddi, Samuel & Demétrio, Clarice G.B., 2012. "A combined beta and normal random-effects model for repeated, overdispersed binary and binomial data," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 94-109.
  • Handle: RePEc:eee:jmvana:v:111:y:2012:i:c:p:94-109
    DOI: 10.1016/j.jmva.2012.05.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X12001315
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2012.05.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guilkey, David K. & Murphy, James L., 1993. "Estimation and testing in the random effects probit model," Journal of Econometrics, Elsevier, vol. 59(3), pages 301-317, October.
    2. Hinde, John & Demetrio, Clarice G. B., 1998. "Overdispersion: Models and estimation," Computational Statistics & Data Analysis, Elsevier, vol. 27(2), pages 151-170, April.
    3. Renard, Didier & Molenberghs, Geert & Geys, Helena, 2004. "A pairwise likelihood approach to estimation in multilevel probit models," Computational Statistics & Data Analysis, Elsevier, vol. 44(4), pages 649-667, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Iraj Kazemi & Fatemeh Hassanzadeh, 2021. "Marginalized random-effects models for clustered binomial data through innovative link functions," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(2), pages 197-228, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. T.-F. Lo & P.-H. Ke & W.-J. Tsay, 2018. "Pairwise likelihood inference for the random effects probit model," Computational Statistics, Springer, vol. 33(2), pages 837-861, June.
    2. Maria Iannario, 2015. "Detecting latent components in ordinal data with overdispersion by means of a mixture distribution," Quality & Quantity: International Journal of Methodology, Springer, vol. 49(3), pages 977-987, May.
    3. M.-L. Feddag, 2016. "Pairwise likelihood estimation for the normal ogive model with binary data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 100(2), pages 223-237, April.
    4. Jörg Breitung & Michael Lechner, 1996. "Estimation de modèles non linéaires sur données de panel par la méthode des moments généralisés," Économie et Prévision, Programme National Persée, vol. 126(5), pages 191-203.
    5. Sofronis K. Clerides & Saul Lach & James R. Tybout, 1998. "Is Learning by Exporting Important? Micro-Dynamic Evidence from Colombia, Mexico, and Morocco," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 113(3), pages 903-947.
    6. Aitken, Brian & Hanson, Gordon H. & Harrison, Ann E., 1997. "Spillovers, foreign investment, and export behavior," Journal of International Economics, Elsevier, vol. 43(1-2), pages 103-132, August.
    7. Andrew Benito & Garry Young, 2003. "Hard Times or Great Expectations? Dividend Omissions and Dividend Cuts by UK Firms," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 65(5), pages 531-555, December.
    8. Peter Gibbard & Ibrahim Stevens, 2011. "Corporate debt and financial balance sheet adjustment: a comparison of the United States, the United Kingdom, France and Germany," Annals of Finance, Springer, vol. 7(1), pages 95-118, February.
    9. Breitung, Jörg & Lechner, Michael, 1998. "Alternative GMM methods for nonlinear panel data models," SFB 373 Discussion Papers 1998,81, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    10. Steven Abrams & Marc Aerts & Geert Molenberghs & Niel Hens, 2017. "Parametric overdispersed frailty models for current status data," Biometrics, The International Biometric Society, vol. 73(4), pages 1388-1400, December.
    11. Heigh, Lori & Rollins, Kimberly S. & Kanetkar, Vinay, 2001. "An Appropriate Welfare Measure Of Wildlife Damage," 2001 Annual meeting, August 5-8, Chicago, IL 20454, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    12. Georges Dionne & Olfa Ghali, 2005. "The (1992) Bonus‐Malus System in Tunisia: An Empirical Evaluation," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 72(4), pages 609-633, December.
    13. Broner, Fernando A. & Gaston Gelos, R. & Reinhart, Carmen M., 2006. "When in peril, retrench: Testing the portfolio channel of contagion," Journal of International Economics, Elsevier, vol. 69(1), pages 203-230, June.
    14. Aeberhard, William H. & Cantoni, Eva & Heritier, Stephane, 2017. "Saddlepoint tests for accurate and robust inference on overdispersed count data," Computational Statistics & Data Analysis, Elsevier, vol. 107(C), pages 162-175.
    15. Sami Mestiri & Abdeljelil Farhat, 2021. "Using Non-parametric Count Model for Credit Scoring," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 19(1), pages 39-49, March.
    16. Karine Lamiraud & Pierre‐Yves Geoffard, 2007. "Therapeutic non‐adherence: a rational behavior revealing patient preferences?," Health Economics, John Wiley & Sons, Ltd., vol. 16(11), pages 1185-1204, November.
    17. I. Gijbels & I. Prosdocimi & G. Claeskens, 2010. "Nonparametric estimation of mean and dispersion functions in extended generalized linear models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(3), pages 580-608, November.
    18. Laia Castany, 2008. "The Role of Firm Size in Training Provision Decisions: evidence from Spain," IREA Working Papers 200808, University of Barcelona, Research Institute of Applied Economics, revised Jun 2008.
    19. I. Gijbels & I. Prosdocimi, 2011. "Smooth estimation of mean and dispersion function in extended generalized additive models with application to Italian induced abortion data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(11), pages 2391-2411, December.
    20. Hung‐pin Lai & Subal C. Kumbhakar, 2020. "Estimation of a dynamic stochastic frontier model using likelihood‐based approaches," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(2), pages 217-247, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:111:y:2012:i:c:p:94-109. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.