IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v95y2016icp75-82.html
   My bibliography  Save this article

Testing the order of a population spectral distribution for high-dimensional data

Author

Listed:
  • Qin, Yingli
  • Li, Weiming

Abstract

Large covariance matrices play a fundamental role in various high-dimensional statistics. Investigating the limiting behavior of the eigenvalues can reveal informative structures of large covariance matrices, which is particularly important in high-dimensional principal component analysis and covariance matrix estimation. In this paper, we propose a framework to test the number of distinct population eigenvalues for large covariance matrices, i.e. the order of a Population Spectral Distribution. The limiting distribution of our test statistic for a Population Spectral Distribution of order 2 is developed along with its (N,p) consistency, which is clearly demonstrated in our simulation study. We also apply our test to two classical microarray datasets.

Suggested Citation

  • Qin, Yingli & Li, Weiming, 2016. "Testing the order of a population spectral distribution for high-dimensional data," Computational Statistics & Data Analysis, Elsevier, vol. 95(C), pages 75-82.
  • Handle: RePEc:eee:csdana:v:95:y:2016:i:c:p:75-82
    DOI: 10.1016/j.csda.2015.09.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947315002364
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2015.09.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fisher, Thomas J. & Sun, Xiaoqian & Gallagher, Colin M., 2010. "A new test for sphericity of the covariance matrix for high dimensional data," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2554-2570, November.
    2. Weiming Li & Jianfeng Yao, 2015. "On generalized expectation-based estimation of a population spectral distribution from high-dimensional data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(2), pages 359-373, April.
    3. Srivastava, Muni S. & Kollo, Tõnu & von Rosen, Dietrich, 2011. "Some tests for the covariance matrix with fewer observations than the dimension under non-normality," Journal of Multivariate Analysis, Elsevier, vol. 102(6), pages 1090-1103, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tian, Xintao & Lu, Yuting & Li, Weiming, 2015. "A robust test for sphericity of high-dimensional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 141(C), pages 217-227.
    2. Glombek, Konstantin, 2013. "A Jarque-Bera test for sphericity of a large-dimensional covariance matrix," Discussion Papers in Econometrics and Statistics 1/13, University of Cologne, Institute of Econometrics and Statistics.
    3. Qian, Manling & Tao, Li & Li, Erqian & Tian, Maozai, 2020. "Hypothesis testing for the identity of high-dimensional covariance matrices," Statistics & Probability Letters, Elsevier, vol. 161(C).
    4. Zhendong Wang & Xingzhong Xu, 2021. "High-dimensional sphericity test by extended likelihood ratio," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(8), pages 1169-1212, November.
    5. Tatsuya Kubokawa & Muni S. Srivastava, 2013. "Optimal Ridge-type Estimators of Covariance Matrix in High Dimension," CIRJE F-Series CIRJE-F-906, CIRJE, Faculty of Economics, University of Tokyo.
    6. Jiang Hu & Zhidong Bai & Chen Wang & Wei Wang, 2017. "On testing the equality of high dimensional mean vectors with unequal covariance matrices," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(2), pages 365-387, April.
    7. Mao, Guangyu, 2018. "Testing independence in high dimensions using Kendall’s tau," Computational Statistics & Data Analysis, Elsevier, vol. 117(C), pages 128-137.
    8. Wang, Cheng & Yang, Jing & Miao, Baiqi & Cao, Longbing, 2013. "Identity tests for high dimensional data using RMT," Journal of Multivariate Analysis, Elsevier, vol. 118(C), pages 128-137.
    9. Bodnar, Olha & Bodnar, Taras & Parolya, Nestor, 2022. "Recent advances in shrinkage-based high-dimensional inference," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    10. Masashi Hyodo & Nobumichi Shutoh & Takahiro Nishiyama & Tatjana Pavlenko, 2015. "Testing block-diagonal covariance structure for high-dimensional data," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 69(4), pages 460-482, November.
    11. Butucea, Cristina & Zgheib, Rania, 2016. "Sharp minimax tests for large Toeplitz covariance matrices with repeated observations," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 164-176.
    12. Zhang, Xiaoxu & Zhao, Ping & Feng, Long, 2022. "Robust sphericity test in the panel data model," Statistics & Probability Letters, Elsevier, vol. 182(C).
    13. Muni S. Srivastava & Hirokazu Yanagihara & Tatsuya Kubokawa, 2014. "Tests for Covariance Matrices in High Dimension with Less Sample Size," CIRJE F-Series CIRJE-F-933, CIRJE, Faculty of Economics, University of Tokyo.
    14. Deepak Nag Ayyala & Santu Ghosh & Daniel F. Linder, 2022. "Covariance matrix testing in high dimension using random projections," Computational Statistics, Springer, vol. 37(3), pages 1111-1141, July.
    15. Wang, Zhendong & Xu, Xingzhong, 2021. "Testing high dimensional covariance matrices via posterior Bayes factor," Journal of Multivariate Analysis, Elsevier, vol. 181(C).
    16. Wen, Jun, 2018. "Estimation of two high-dimensional covariance matrices and the spectrum of their ratio," Journal of Multivariate Analysis, Elsevier, vol. 168(C), pages 1-29.
    17. Liu, Baisen & Xu, Lin & Zheng, Shurong & Tian, Guo-Liang, 2014. "A new test for the proportionality of two large-dimensional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 293-308.
    18. Ikeda, Yuki & Kubokawa, Tatsuya & Srivastava, Muni S., 2016. "Comparison of linear shrinkage estimators of a large covariance matrix in normal and non-normal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 95(C), pages 95-108.
    19. Gupta, Arjun K. & Bodnar, Taras, 2014. "An exact test about the covariance matrix," Journal of Multivariate Analysis, Elsevier, vol. 125(C), pages 176-189.
    20. Wang, Guanghui & Zou, Changliang & Wang, Zhaojun, 2013. "A necessary test for complete independence in high dimensions using rank-correlations," Journal of Multivariate Analysis, Elsevier, vol. 121(C), pages 224-232.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:95:y:2016:i:c:p:75-82. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.