IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v101y2010i9p2026-2038.html
   My bibliography  Save this article

Sieve maximum likelihood estimation for doubly semiparametric zero-inflated Poisson models

Author

Listed:
  • He, Xuming
  • Xue, Hongqi
  • Shi, Ning-Zhong

Abstract

For nonnegative measurements such as income or sick days, zero counts often have special status. Furthermore, the incidence of zero counts is often greater than expected for the Poisson model. This article considers a doubly semiparametric zero-inflated Poisson model to fit data of this type, which assumes two partially linear link functions in both the mean of the Poisson component and the probability of zero. We study a sieve maximum likelihood estimator for both the regression parameters and the nonparametric functions. We show, under routine conditions, that the estimators are strongly consistent. Moreover, the parameter estimators are asymptotically normal and first order efficient, while the nonparametric components achieve the optimal convergence rates. Simulation studies suggest that the extra flexibility inherent from the doubly semiparametric model is gained with little loss in statistical efficiency. We also illustrate our approach with a dataset from a public health study.

Suggested Citation

  • He, Xuming & Xue, Hongqi & Shi, Ning-Zhong, 2010. "Sieve maximum likelihood estimation for doubly semiparametric zero-inflated Poisson models," Journal of Multivariate Analysis, Elsevier, vol. 101(9), pages 2026-2038, October.
  • Handle: RePEc:eee:jmvana:v:101:y:2010:i:9:p:2026-2038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(10)00110-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Chin-Shang & Taylor, Jeremy M. G. & Sy, Judy P., 2001. "Identifiability of cure models," Statistics & Probability Letters, Elsevier, vol. 54(4), pages 389-395, October.
    2. Jansakul, N. & Hinde, J. P., 2002. "Score Tests for Zero-Inflated Poisson Models," Computational Statistics & Data Analysis, Elsevier, vol. 40(1), pages 75-96, July.
    3. Mullahy, John, 1986. "Specification and testing of some modified count data models," Journal of Econometrics, Elsevier, vol. 33(3), pages 341-365, December.
    4. Xue H. & Lam K.F. & Li G., 2004. "Sieve Maximum Likelihood Estimator for Semiparametric Regression Models With Current Status Data," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 346-356, January.
    5. K. F. Lam & Hongqi Xue & Yin Bun Cheung, 2006. "Semiparametric Analysis of Zero-Inflated Count Data," Biometrics, The International Biometric Society, vol. 62(4), pages 996-1003, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nadja Klein & Thomas Kneib & Stefan Lang, 2015. "Bayesian Generalized Additive Models for Location, Scale, and Shape for Zero-Inflated and Overdispersed Count Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 405-419, March.
    2. Das, Ujjwal & Das, Kalyan, 2018. "Inference on zero inflated ordinal models with semiparametric link," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 104-115.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Das, Ujjwal & Das, Kalyan, 2018. "Inference on zero inflated ordinal models with semiparametric link," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 104-115.
    2. Guoqing Diao & Ao Yuan, 2019. "A class of semiparametric cure models with current status data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(1), pages 26-51, January.
    3. Tousifur Rahman & Partha Jyoti Hazarika & M. Masoom Ali & Manash Pratim Barman, 2022. "Three-Inflated Poisson Distribution and its Application in Suicide Cases of India During Covid-19 Pandemic," Annals of Data Science, Springer, vol. 9(5), pages 1103-1127, October.
    4. Wei-Wen Hsu & David Todem & Kyungmann Kim, 2015. "Adjusted Supremum Score-Type Statistics for Evaluating Non-Standard Hypotheses," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(3), pages 746-759, September.
    5. Hu, Tao & Xiang, Liming, 2013. "Efficient estimation for semiparametric cure models with interval-censored data," Journal of Multivariate Analysis, Elsevier, vol. 121(C), pages 139-151.
    6. K. F. Lam & Hongqi Xue & Yin Bun Cheung, 2006. "Semiparametric Analysis of Zero-Inflated Count Data," Biometrics, The International Biometric Society, vol. 62(4), pages 996-1003, December.
    7. Abbas Moghimbeigi & Mohammed Reza Eshraghian & Kazem Mohammad & Brian Mcardle, 2008. "Multilevel zero-inflated negative binomial regression modeling for over-dispersed count data with extra zeros," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(10), pages 1193-1202.
    8. T. Martin Lukusa & Shen-Ming Lee & Chin-Shang Li, 2016. "Semiparametric estimation of a zero-inflated Poisson regression model with missing covariates," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(4), pages 457-483, May.
    9. Xiaoguang Wang & Ziwen Wang, 2021. "EM algorithm for the additive risk mixture cure model with interval-censored data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(1), pages 91-130, January.
    10. Shen-Ming Lee & T. Martin Lukusa & Chin-Shang Li, 2020. "Estimation of a zero-inflated Poisson regression model with missing covariates via nonparametric multiple imputation methods," Computational Statistics, Springer, vol. 35(2), pages 725-754, June.
    11. Shuangge Ma, 2011. "Additive risk model for current status data with a cured subgroup," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(1), pages 117-134, February.
    12. Yixuan Zou & Jan Hannig & Derek S. Young, 2021. "Generalized fiducial inference on the mean of zero-inflated Poisson and Poisson hurdle models," Journal of Statistical Distributions and Applications, Springer, vol. 8(1), pages 1-15, December.
    13. Moghimbeigi, Abbas & Eshraghian, Mohammad Reza & Mohammad, Kazem & McArdle, Brian, 2009. "A score test for zero-inflation in multilevel count data," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1239-1248, February.
    14. Boncinelli, Fabio & Bartolini, Fabio & Casini, Leonardo, 2018. "Structural factors of labour allocation for farm diversification activities," Land Use Policy, Elsevier, vol. 71(C), pages 204-212.
    15. Kan, Kamhon & Fu, Tsu-Tan, 1997. "Analysis of Housewives' Grocery Shopping Behavior in Taiwan: An Application of the Poisson Switching Regression," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 29(2), pages 397-407, December.
    16. Bilgic, Abdulbaki & Florkowski, Wojciech J., 2003. "Truncated-At-Zero Count Data Models With Partial Observability: An Application To The Freshwater Fishing Demand In The Southeastern U.S," 2003 Annual Meeting, February 1-5, 2003, Mobile, Alabama 35185, Southern Agricultural Economics Association.
    17. Domenico Piccolo & Rosaria Simone, 2019. "The class of cub models: statistical foundations, inferential issues and empirical evidence," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(3), pages 389-435, September.
    18. Greene, William, 2007. "Functional Form and Heterogeneity in Models for Count Data," Foundations and Trends(R) in Econometrics, now publishers, vol. 1(2), pages 113-218, August.
    19. Christopher J. W. Zorn, 1998. "An Analytic and Empirical Examination of Zero-Inflated and Hurdle Poisson Specifications," Sociological Methods & Research, , vol. 26(3), pages 368-400, February.
    20. Ajiferuke, Isola & Famoye, Felix, 2015. "Modelling count response variables in informetric studies: Comparison among count, linear, and lognormal regression models," Journal of Informetrics, Elsevier, vol. 9(3), pages 499-513.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:101:y:2010:i:9:p:2026-2038. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.