IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v101y2010i2p476-490.html
   My bibliography  Save this article

Estimation of the regression operator from functional fixed-design with correlated errors

Author

Listed:
  • Benhenni, K.
  • Hedli-Griche, S.
  • Rachdi, M.

Abstract

We consider the estimation of the regression operator r in the functional model: Y=r(x)+[epsilon], where the explanatory variable x is of functional fixed-design type, the response Y is a real random variable and the error process [epsilon] is a second order stationary process. We construct the kernel type estimate of r from functional data curves and correlated errors. Then we study their performances in terms of the mean square convergence and the convergence in probability. In particular, we consider the cases of short and long range error processes. When the errors are negatively correlated or come from a short memory process, the asymptotic normality of this estimate is derived. Finally, some simulation studies are conducted for a fractional autoregressive integrated moving average and for an Ornstein-Uhlenbeck error processes.

Suggested Citation

  • Benhenni, K. & Hedli-Griche, S. & Rachdi, M., 2010. "Estimation of the regression operator from functional fixed-design with correlated errors," Journal of Multivariate Analysis, Elsevier, vol. 101(2), pages 476-490, February.
  • Handle: RePEc:eee:jmvana:v:101:y:2010:i:2:p:476-490
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(09)00184-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Frédéric Ferraty & Philippe Vieu, 2002. "The Functional Nonparametric Model and Application to Spectrometric Data," Computational Statistics, Springer, vol. 17(4), pages 545-564, December.
    2. Boente, Graciela & Fraiman, Ricardo, 2000. "Kernel-based functional principal components," Statistics & Probability Letters, Elsevier, vol. 48(4), pages 335-345, July.
    3. K. Benhenni & F. Ferraty & M. Rachdi & P. Vieu, 2007. "Local smoothing regression with functional data," Computational Statistics, Springer, vol. 22(3), pages 353-369, September.
    4. Benhenni, K. & Hedli-Griche, S. & Rachdi, M. & Vieu, P., 2008. "Consistency of the regression estimator with functional data under long memory conditions," Statistics & Probability Letters, Elsevier, vol. 78(8), pages 1043-1049, June.
    5. Roussas, George G., 2000. "Asymptotic normality of the kernel estimate of a probability density function under association," Statistics & Probability Letters, Elsevier, vol. 50(1), pages 1-12, October.
    6. Roussas, G. G., 1994. "Asymptotic Normality of Random Fields of Positively or Negatively Associated Processes," Journal of Multivariate Analysis, Elsevier, vol. 50(1), pages 152-173, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuliana Linke & Igor Borisov & Pavel Ruzankin & Vladimir Kutsenko & Elena Yarovaya & Svetlana Shalnova, 2022. "Universal Local Linear Kernel Estimators in Nonparametric Regression," Mathematics, MDPI, vol. 10(15), pages 1-28, July.
    2. Lihong Wang, 2020. "Nearest neighbors estimation for long memory functional data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(4), pages 709-725, December.
    3. Karim Benhenni & Sonia Hedli-Griche & Mustapha Rachdi, 2017. "Regression models with correlated errors based on functional random design," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 1-21, March.
    4. Benhenni, Karim & Hassan, Ali Hajj & Su, Yingcai, 2019. "Local polynomial estimation of regression operators from functional data with correlated errors," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 80-94.
    5. Karim Benhenni & Ali Hajj Hassan & Yingcai Su, 2024. "The effect of correlated errors on the performance of local linear estimation of regression function based on random functional design," Statistical Papers, Springer, vol. 65(6), pages 3395-3423, August.
    6. Igor S. Borisov & Yuliana Yu. Linke & Pavel S. Ruzankin, 2021. "Universal weighted kernel-type estimators for some class of regression models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(2), pages 141-166, February.
    7. Idir Ouassou & Mustapha Rachdi, 2012. "Regression operator estimation by delta-sequences method for functional data and its applications," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 96(4), pages 451-465, October.
    8. Yousri Slaoui, 2020. "Recursive nonparametric regression estimation for dependent strong mixing functional data," Statistical Inference for Stochastic Processes, Springer, vol. 23(3), pages 665-697, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Idir Ouassou & Mustapha Rachdi, 2012. "Regression operator estimation by delta-sequences method for functional data and its applications," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 96(4), pages 451-465, October.
    2. Karim Benhenni & Sonia Hedli-Griche & Mustapha Rachdi, 2017. "Regression models with correlated errors based on functional random design," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 1-21, March.
    3. Delsol, Laurent & Ferraty, Frédéric & Vieu, Philippe, 2011. "Structural test in regression on functional variables," Journal of Multivariate Analysis, Elsevier, vol. 102(3), pages 422-447, March.
    4. Liang, Han-Ying & Fan, Guo-Liang, 2009. "Berry-Esseen type bounds of estimators in a semiparametric model with linear process errors," Journal of Multivariate Analysis, Elsevier, vol. 100(1), pages 1-15, January.
    5. Masry, Elias, 2003. "Local polynomial fitting under association," Journal of Multivariate Analysis, Elsevier, vol. 86(2), pages 330-359, August.
    6. Han Shang, 2014. "Bayesian bandwidth estimation for a semi-functional partial linear regression model with unknown error density," Computational Statistics, Springer, vol. 29(3), pages 829-848, June.
    7. Cuevas, Antonio & Febrero, Manuel & Fraiman, Ricardo, 2004. "An anova test for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 47(1), pages 111-122, August.
    8. Chagny, Gaëlle & Roche, Angelina, 2016. "Adaptive estimation in the functional nonparametric regression model," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 105-118.
    9. Yang, Shanchao, 2003. "Uniformly asymptotic normality of the regression weighted estimator for negatively associated samples," Statistics & Probability Letters, Elsevier, vol. 62(2), pages 101-110, April.
    10. Boumahdi, Mounir & Ouassou, Idir & Rachdi, Mustapha, 2023. "Estimation in nonparametric functional-on-functional models with surrogate responses," Journal of Multivariate Analysis, Elsevier, vol. 198(C).
    11. Boente, Graciela & Vahnovan, Alejandra, 2017. "Robust estimators in semi-functional partial linear regression models," Journal of Multivariate Analysis, Elsevier, vol. 154(C), pages 59-84.
    12. Tomasz Górecki & Łukasz Smaga, 2015. "A comparison of tests for the one-way ANOVA problem for functional data," Computational Statistics, Springer, vol. 30(4), pages 987-1010, December.
    13. Kadiri Nadia & Rabhi Abbes & Bouchentouf Amina Angelika, 2018. "Strong uniform consistency rates of conditional quantile estimation in the single functional index model under random censorship," Dependence Modeling, De Gruyter, vol. 6(1), pages 197-227, November.
    14. Rachdi, Mustapha & Laksaci, Ali & Demongeot, Jacques & Abdali, Abdel & Madani, Fethi, 2014. "Theoretical and practical aspects of the quadratic error in the local linear estimation of the conditional density for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 73(C), pages 53-68.
    15. Shang, Han Lin, 2013. "Bayesian bandwidth estimation for a nonparametric functional regression model with unknown error density," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 185-198.
    16. Cuevas, Antonio & Febrero, Manuel & Fraiman, Ricardo, 2006. "On the use of the bootstrap for estimating functions with functional data," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 1063-1074, November.
    17. Dabo-Niang, S. & Guillas, S. & Ternynck, C., 2016. "Efficiency in multivariate functional nonparametric models with autoregressive errors," Journal of Multivariate Analysis, Elsevier, vol. 147(C), pages 168-182.
    18. Cai, Zongwu & Roussas, George G., 1998. "Kaplan-Meier Estimator under Association," Journal of Multivariate Analysis, Elsevier, vol. 67(2), pages 318-348, November.
    19. Poskitt, D.S. & Sengarapillai, Arivalzahan, 2013. "Description length and dimensionality reduction in functional data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 98-113.
    20. C. Abraham & G. Biau & B. Cadre, 2006. "On the Kernel Rule for Function Classification," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 58(3), pages 619-633, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:101:y:2010:i:2:p:476-490. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.