IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v65y2024i6d10.1007_s00362-023-01523-z.html
   My bibliography  Save this article

The effect of correlated errors on the performance of local linear estimation of regression function based on random functional design

Author

Listed:
  • Karim Benhenni

    (Université Grenoble Alpes, UMR 5224 CNRS)

  • Ali Hajj Hassan

    (Université Grenoble Alpes, UMR 5224 CNRS)

  • Yingcai Su

    (Missouri State University)

Abstract

This article considers the problem of nonparametric estimation of the regression function $$r$$ r in a functional regression model $$Y = r(X) +\varepsilon $$ Y = r ( X ) + ε with a scalar response Y, a functional explanatory variable X, and a second order stationary error process $$\varepsilon $$ ε . Under some specific criteria, we construct a local linear kernel estimator of $$r$$ r from functional random design with correlated errors. The exact rates of convergence of mean squared error of the constructed estimator are established for both short and long range dependent error processes. Simulation studies are conducted on the performance of the proposed simple local linear estimator. Examples of time series data are considered.

Suggested Citation

  • Karim Benhenni & Ali Hajj Hassan & Yingcai Su, 2024. "The effect of correlated errors on the performance of local linear estimation of regression function based on random functional design," Statistical Papers, Springer, vol. 65(6), pages 3395-3423, August.
  • Handle: RePEc:spr:stpapr:v:65:y:2024:i:6:d:10.1007_s00362-023-01523-z
    DOI: 10.1007/s00362-023-01523-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-023-01523-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-023-01523-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. K. Benhenni & F. Ferraty & M. Rachdi & P. Vieu, 2007. "Local smoothing regression with functional data," Computational Statistics, Springer, vol. 22(3), pages 353-369, September.
    2. Benhenni, K. & Hedli-Griche, S. & Rachdi, M., 2010. "Estimation of the regression operator from functional fixed-design with correlated errors," Journal of Multivariate Analysis, Elsevier, vol. 101(2), pages 476-490, February.
    3. Germán Aneiros‐Pérez & Ricardo Cao & Juan M. Vilar‐Fernández, 2011. "Functional methods for time series prediction: a nonparametric approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(4), pages 377-392, July.
    4. Karim Benhenni & Sonia Hedli-Griche & Mustapha Rachdi, 2017. "Regression models with correlated errors based on functional random design," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 1-21, March.
    5. Aneiros-Pérez, Germán & Vieu, Philippe, 2008. "Nonparametric time series prediction: A semi-functional partial linear modeling," Journal of Multivariate Analysis, Elsevier, vol. 99(5), pages 834-857, May.
    6. Benhenni, Karim & Hassan, Ali Hajj & Su, Yingcai, 2019. "Local polynomial estimation of regression operators from functional data with correlated errors," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 80-94.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Benhenni, Karim & Hassan, Ali Hajj & Su, Yingcai, 2019. "Local polynomial estimation of regression operators from functional data with correlated errors," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 80-94.
    2. Gheriballah, Abdelkader & Laksaci, Ali & Sekkal, Soumeya, 2013. "Nonparametric M-regression for functional ergodic data," Statistics & Probability Letters, Elsevier, vol. 83(3), pages 902-908.
    3. Goia, Aldo, 2012. "A functional linear model for time series prediction with exogenous variables," Statistics & Probability Letters, Elsevier, vol. 82(5), pages 1005-1011.
    4. Han Shang, 2014. "Bayesian bandwidth estimation for a semi-functional partial linear regression model with unknown error density," Computational Statistics, Springer, vol. 29(3), pages 829-848, June.
    5. Idir Ouassou & Mustapha Rachdi, 2012. "Regression operator estimation by delta-sequences method for functional data and its applications," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 96(4), pages 451-465, October.
    6. M. D. Ruiz-Medina & D. Miranda & R. M. Espejo, 2019. "Dynamical multiple regression in function spaces, under kernel regressors, with ARH(1) errors," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 943-968, September.
    7. Lydia Kara-Zaitri & Ali Laksaci & Mustapha Rachdi & Philippe Vieu, 2017. "Uniform in bandwidth consistency for various kernel estimators involving functional data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(1), pages 85-107, January.
    8. Boumahdi, Mounir & Ouassou, Idir & Rachdi, Mustapha, 2023. "Estimation in nonparametric functional-on-functional models with surrogate responses," Journal of Multivariate Analysis, Elsevier, vol. 198(C).
    9. Boente, Graciela & Vahnovan, Alejandra, 2017. "Robust estimators in semi-functional partial linear regression models," Journal of Multivariate Analysis, Elsevier, vol. 154(C), pages 59-84.
    10. repec:cte:wsrepe:24606 is not listed on IDEAS
    11. Yousri Slaoui, 2020. "Recursive nonparametric regression estimation for dependent strong mixing functional data," Statistical Inference for Stochastic Processes, Springer, vol. 23(3), pages 665-697, October.
    12. Karim Benhenni & Sonia Hedli-Griche & Mustapha Rachdi, 2017. "Regression models with correlated errors based on functional random design," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 1-21, March.
    13. Dabo-Niang, S. & Guillas, S. & Ternynck, C., 2016. "Efficiency in multivariate functional nonparametric models with autoregressive errors," Journal of Multivariate Analysis, Elsevier, vol. 147(C), pages 168-182.
    14. Han Lin Shang, 2014. "Bayesian bandwidth estimation for a functional nonparametric regression model with mixed types of regressors and unknown error density," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(3), pages 599-615, September.
    15. Lihong Wang, 2020. "Nearest neighbors estimation for long memory functional data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(4), pages 709-725, December.
    16. Elías, Antonio & Jiménez, Raúl & Shang, Han Lin, 2022. "On projection methods for functional time series forecasting," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    17. Delsol, Laurent & Ferraty, Frédéric & Vieu, Philippe, 2011. "Structural test in regression on functional variables," Journal of Multivariate Analysis, Elsevier, vol. 102(3), pages 422-447, March.
    18. Nengxiang Ling & Rui Kan & Philippe Vieu & Shuyu Meng, 2019. "Semi-functional partially linear regression model with responses missing at random," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(1), pages 39-70, January.
    19. Timmermans, Catherine & Delsol, Laurent & von Sachs, Rainer, 2013. "Using Bagidis in nonparametric functional data analysis: Predicting from curves with sharp local features," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 421-444.
    20. Allam, Abdelaziz & Mourid, Tahar, 2019. "Optimal rate for covariance operator estimators of functional autoregressive processes with random coefficients," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 130-137.
    21. Demongeot, Jacques & Hamie, Ali & Laksaci, Ali & Rachdi, Mustapha, 2016. "Relative-error prediction in nonparametric functional statistics: Theory and practice," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 261-268.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:65:y:2024:i:6:d:10.1007_s00362-023-01523-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.