IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v100y2009i8p1610-1621.html
   My bibliography  Save this article

Simultaneous credible intervals for small area estimation problems

Author

Listed:
  • Ganesh, N.

Abstract

In this paper, we fill in an important research gap in small area literature, namely the problem of constructing simultaneous credible intervals. We illustrate how the Bayesian approach can be applied to develop different simultaneous credible interval procedures. The utility of our method is illustrated through simulation and data analysis.

Suggested Citation

  • Ganesh, N., 2009. "Simultaneous credible intervals for small area estimation problems," Journal of Multivariate Analysis, Elsevier, vol. 100(8), pages 1610-1621, September.
  • Handle: RePEc:eee:jmvana:v:100:y:2009:i:8:p:1610-1621
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(09)00023-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gauri Sankar Datta & J. N. K. Rao & David Daniel Smith, 2005. "On measuring the variability of small area estimators under a basic area level model," Biometrika, Biometrika Trust, vol. 92(1), pages 183-196, March.
    2. Jiming Jiang & P. Lahiri, 2006. "Mixed model prediction and small area estimation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 15(1), pages 1-96, June.
    3. Jiang, Jiming & Lahiri, P., 2006. "Estimation of Finite Population Domain Means: A Model-Assisted Empirical Best Prediction Approach," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 301-311, March.
    4. N. Ganesh & P. Lahiri, 2008. "A new class of average moment matching priors," Biometrika, Biometrika Trust, vol. 95(2), pages 514-520.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiming Jiang & En-Tzu Tang, 2011. "The best EBLUP in the Fay–Herriot model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(6), pages 1123-1140, December.
    2. Jiming Jiang & Mahmoud Torabi, 2022. "Goodness-of-fit test with a robustness feature," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(1), pages 76-100, March.
    3. Katarzyna Reluga & María‐José Lombardía & Stefan Sperlich, 2023. "Simultaneous inference for linear mixed model parameters with an application to small area estimation," International Statistical Review, International Statistical Institute, vol. 91(2), pages 193-217, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lixia Diao & David D. Smith & Gauri Sankar Datta & Tapabrata Maiti & Jean D. Opsomer, 2014. "Accurate Confidence Interval Estimation of Small Area Parameters Under the Fay–Herriot Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(2), pages 497-515, June.
    2. Torabi, Mahmoud & Rao, J.N.K., 2014. "On small area estimation under a sub-area level model," Journal of Multivariate Analysis, Elsevier, vol. 127(C), pages 36-55.
    3. Malay Ghosh, 2020. "Small area estimation: its evolution in five decades," Statistics in Transition New Series, Polish Statistical Association, vol. 21(4), pages 1-22, August.
    4. Shonosuke Sugasawa & Tatsuya Kubokawa & Kota Ogasawara, 2017. "Empirical Uncertain Bayes Methods in Area-level Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(3), pages 684-706, September.
    5. Harm Jan Boonstra & Jan A. Van Den Brakel & Bart Buelens & Sabine Krieg & Marc Smeets, 2008. "Towards small area estimation at Statistics Netherlands," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(1), pages 21-49.
    6. Ghosh Malay, 2020. "Small area estimation: its evolution in five decades," Statistics in Transition New Series, Polish Statistical Association, vol. 21(4), pages 1-22, August.
    7. Shonosuke Sugasawa & Tatsuya Kubokawa, 2015. "Box-Cox Transformed Linear Mixed Models for Positive-Valued and Clustered Data," CIRJE F-Series CIRJE-F-957, CIRJE, Faculty of Economics, University of Tokyo.
    8. Luis Pereira & Pedro Coelho, 2013. "Estimation of house prices in regions with small sample sizes," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 50(2), pages 603-621, April.
    9. Andreea L. Erciulescu & Jean D. Opsomer, 2022. "A model‐based approach to predict employee compensation components," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1503-1520, November.
    10. Yoshimori, Masayo & Lahiri, Partha, 2014. "A new adjusted maximum likelihood method for the Fay–Herriot small area model," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 281-294.
    11. Chakraborty Adrijo & Datta Gauri Sankar & Mandal Abhyuday, 2016. "A Two-Component Normal Mixture Alternative to the Fay-Herriot Model," Statistics in Transition New Series, Polish Statistical Association, vol. 17(1), pages 67-90, March.
    12. repec:csb:stintr:v:17:y:2016:i:1:p:67-90 is not listed on IDEAS
    13. Ralf Münnich & Jan Burgard & Martin Vogt, 2013. "Small Area-Statistik: Methoden und Anwendungen," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 6(3), pages 149-191, March.
    14. Jiming Jiang & En-Tzu Tang, 2011. "The best EBLUP in the Fay–Herriot model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(6), pages 1123-1140, December.
    15. Shonosuke Sugasawa & Tatsuya Kubokawa & J. N. K. Rao, 2018. "Small area estimation via unmatched sampling and linking models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 407-427, June.
    16. Sanjoy K. Sinha, 2019. "Robust small area estimation in generalized linear mixed models," METRON, Springer;Sapienza Università di Roma, vol. 77(3), pages 201-225, December.
    17. Adrijo Chakraborty & Gauri Sankar Datta & Abhyuday Mandal, 2016. "A Two-Component Normal Mixture Alternative To The Fay-Herriot Model," Statistics in Transition New Series, Polish Statistical Association, vol. 17(1), pages 67-90, March.
    18. Rong Zhu & Guohua Zou & Hua Liang & Lixing Zhu, 2016. "Penalized Weighted Least Squares to Small Area Estimation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(3), pages 736-756, September.
    19. K. Shuvo Bakar & Nicholas Biddle & Philip Kokic & Huidong Jin, 2020. "A Bayesian spatial categorical model for prediction to overlapping geographical areas in sample surveys," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(2), pages 535-563, February.
    20. Malay Ghosh & Tatsuya Kubokawa & Yuki Kawakubo, 2014. "Benchmarked Empirical Bayes Methods in Multiplicative Area-level Models with Risk Evaluation," CIRJE F-Series CIRJE-F-918, CIRJE, Faculty of Economics, University of Tokyo.
    21. repec:csb:stintr:v:17:y:2016:i:1:p:9-24 is not listed on IDEAS
    22. Jan Pablo Burgard & Ralf Münnich, 2015. "Sae Teaching Using Simulations," Statistics in Transition New Series, Polish Statistical Association, vol. 16(4), pages 603-610, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:100:y:2009:i:8:p:1610-1621. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.