IDEAS home Printed from https://ideas.repec.org/p/tky/fseres/2015cf957.html
   My bibliography  Save this paper

Box-Cox Transformed Linear Mixed Models for Positive-Valued and Clustered Data

Author

Listed:
  • Shonosuke Sugasawa

    (Graduate School of Economics, The University of Tokyo)

  • Tatsuya Kubokawa

    (Faculty of Economics, The University of Tokyo)

Abstract

The Box-Cox transformation is applied to linear mixed models for analyzing positive and clustered data. The problem is that the maximum likelihood estimator of the transformation parameter is not consistent. To fix it, we suggest a simple and consistent estimator for the transformation parameter based on the moment method. The consistent estimator is used to construct consistent estimators of the parameters involved in the model and to provide an empirical predictor of a linear combination of both fixed and random effects. Second-order accurate prediction intervals for measuring uncertainty of the predictor are derived. Finally, the performance of the proposed procedure is investigated through simulation and empirical studies. --

Suggested Citation

  • Shonosuke Sugasawa & Tatsuya Kubokawa, 2015. "Box-Cox Transformed Linear Mixed Models for Positive-Valued and Clustered Data," CIRJE F-Series CIRJE-F-957, CIRJE, Faculty of Economics, University of Tokyo.
  • Handle: RePEc:tky:fseres:2015cf957
    as

    Download full text from publisher

    File URL: http://www.cirje.e.u-tokyo.ac.jp/research/dp/2015/2015cf957.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gauri Sankar Datta & J. N. K. Rao & David Daniel Smith, 2005. "On measuring the variability of small area estimators under a basic area level model," Biometrika, Biometrika Trust, vol. 92(1), pages 183-196, March.
    2. Yang, Zhenlin, 2006. "A modified family of power transformations," Economics Letters, Elsevier, vol. 92(1), pages 14-19, July.
    3. Kawakubo, Yuki & Kubokawa, Tatsuya, 2014. "Modified conditional AIC in linear mixed models," Journal of Multivariate Analysis, Elsevier, vol. 129(C), pages 44-56.
    4. Matthew J. Gurka & Lloyd J. Edwards & Keith E. Muller & Lawrence L. Kupper, 2006. "Extending the Box–Cox transformation to the linear mixed model," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 169(2), pages 273-288, March.
    5. Jiming Jiang & P. Lahiri, 2006. "Mixed model prediction and small area estimation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 15(1), pages 1-96, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Patricia Dörr & Jan Pablo Burgard, 2019. "Data-driven transformations and survey-weighting for linear mixed models," Research Papers in Economics 2019-16, University of Trier, Department of Economics.
    2. Huapeng Li & Yukun Liu & Riquan Zhang, 2019. "Small area estimation under transformed nested-error regression models," Statistical Papers, Springer, vol. 60(4), pages 1397-1418, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lixia Diao & David D. Smith & Gauri Sankar Datta & Tapabrata Maiti & Jean D. Opsomer, 2014. "Accurate Confidence Interval Estimation of Small Area Parameters Under the Fay–Herriot Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(2), pages 497-515, June.
    2. Patricia Dörr & Jan Pablo Burgard, 2019. "Data-driven transformations and survey-weighting for linear mixed models," Research Papers in Economics 2019-16, University of Trier, Department of Economics.
    3. Torabi, Mahmoud & Rao, J.N.K., 2014. "On small area estimation under a sub-area level model," Journal of Multivariate Analysis, Elsevier, vol. 127(C), pages 36-55.
    4. Huapeng Li & Yukun Liu & Riquan Zhang, 2019. "Small area estimation under transformed nested-error regression models," Statistical Papers, Springer, vol. 60(4), pages 1397-1418, August.
    5. Malay Ghosh, 2020. "Small area estimation: its evolution in five decades," Statistics in Transition New Series, Polish Statistical Association, vol. 21(4), pages 1-22, August.
    6. Shonosuke Sugasawa & Tatsuya Kubokawa & Kota Ogasawara, 2017. "Empirical Uncertain Bayes Methods in Area-level Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(3), pages 684-706, September.
    7. Harm Jan Boonstra & Jan A. Van Den Brakel & Bart Buelens & Sabine Krieg & Marc Smeets, 2008. "Towards small area estimation at Statistics Netherlands," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(1), pages 21-49.
    8. Ghosh Malay, 2020. "Small area estimation: its evolution in five decades," Statistics in Transition New Series, Polish Statistical Association, vol. 21(4), pages 1-22, August.
    9. Shonosuke Sugasawa & Tatsuya Kubokawa, 2014. "Estimation and Prediction Intervals in Transformed Linear Mixed Models," CIRJE F-Series CIRJE-F-929, CIRJE, Faculty of Economics, University of Tokyo.
    10. Luis Pereira & Pedro Coelho, 2013. "Estimation of house prices in regions with small sample sizes," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 50(2), pages 603-621, April.
    11. Andreea L. Erciulescu & Jean D. Opsomer, 2022. "A model‐based approach to predict employee compensation components," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1503-1520, November.
    12. Ganesh, N., 2009. "Simultaneous credible intervals for small area estimation problems," Journal of Multivariate Analysis, Elsevier, vol. 100(8), pages 1610-1621, September.
    13. Shonosuke Sugasawa & Tatsuya Kubokawa, 2013. " Parametric Transformed Fay-Herriot Model for Small Area Estimation ," CIRJE F-Series CIRJE-F-911, CIRJE, Faculty of Economics, University of Tokyo.
    14. Yoshimori, Masayo & Lahiri, Partha, 2014. "A new adjusted maximum likelihood method for the Fay–Herriot small area model," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 281-294.
    15. Sugasawa, Shonosuke & Kubokawa, Tatsuya, 2015. "Parametric transformed Fay–Herriot model for small area estimation," Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 295-311.
    16. Chakraborty Adrijo & Datta Gauri Sankar & Mandal Abhyuday, 2016. "A Two-Component Normal Mixture Alternative to the Fay-Herriot Model," Statistics in Transition New Series, Polish Statistical Association, vol. 17(1), pages 67-90, March.
    17. repec:csb:stintr:v:17:y:2016:i:1:p:67-90 is not listed on IDEAS
    18. Natalia Rojas‐Perilla & Sören Pannier & Timo Schmid & Nikos Tzavidis, 2020. "Data‐driven transformations in small area estimation," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(1), pages 121-148, January.
    19. Ralf Münnich & Jan Burgard & Martin Vogt, 2013. "Small Area-Statistik: Methoden und Anwendungen," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 6(3), pages 149-191, March.
    20. Sugasawa, Shonosuke & Kubokawa, Tatsuya, 2017. "Transforming response values in small area prediction," Computational Statistics & Data Analysis, Elsevier, vol. 114(C), pages 47-60.
    21. Jiming Jiang & En-Tzu Tang, 2011. "The best EBLUP in the Fay–Herriot model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(6), pages 1123-1140, December.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tky:fseres:2015cf957. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CIRJE administrative office (email available below). General contact details of provider: https://edirc.repec.org/data/ritokjp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.