IDEAS home Printed from https://ideas.repec.org/a/eee/jfpoli/v72y2017icp146-156.html
   My bibliography  Save this article

You are what (and where) you eat: Capturing food away from home in welfare measures

Author

Listed:
  • Farfán, Gabriela
  • Genoni, María Eugenia
  • Vakis, Renos

Abstract

Consumption of food away from home is rapidly growing across the developing world, and will continue to do so as GDP per person grows and food systems evolve. Surprisingly, the majority of household surveys have not kept up with its pace and still collect limited information on it. The implications for poverty and inequality measurement are far from clear, and the direction of the impact cannot be established a priori. This paper exploits rich data on food away from home collected as part of the National Household Survey in Peru, to shed light on the extent to which welfare measures differ depending on whether food away from home is accounted for or not. Peru is a relevant context, with the average Peruvian household spending over a quarter of their food budget on food away from home since 2010. The analysis indicates that failure to account for this consumption has important implications for poverty and inequality measures as well as the understanding of who the poor are. First, accounting for food away from home results in extreme poverty rates that are 18 percent higher and moderate poverty rates that are 16 percent lower. These results are also consistent, in fact more pronounced, with poverty gap and severity measures. Second, consumption inequality measured by the Gini coefficient decreases by 1.3 points when food away from home is included – a significant reduction. Finally, the inclusion of food away from home results in a reclassification of households across poor/non-poor status – 20 percent of the poor are different, resulting in small but significant differences in the profile of the poor in dimensions such as demographics, education, and labor market characteristics. Taken together, the results indicate that a serious rethinking of how to deal with the consumption of food away from home in measuring well-being is urgently needed to properly estimate and understand poverty around the world.

Suggested Citation

  • Farfán, Gabriela & Genoni, María Eugenia & Vakis, Renos, 2017. "You are what (and where) you eat: Capturing food away from home in welfare measures," Food Policy, Elsevier, vol. 72(C), pages 146-156.
  • Handle: RePEc:eee:jfpoli:v:72:y:2017:i:c:p:146-156
    DOI: 10.1016/j.foodpol.2017.08.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030691921730708X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.foodpol.2017.08.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. John Gibson & Jikun Huang & Scott Rozelle, 2003. "Improving Estimates of Inequality and Poverty from Urban China's Household Income and Expenditure Survey," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 49(1), pages 53-68, March.
    2. Martin Ravallion & Shaohua Chen, 2011. "Weakly Relative Poverty," The Review of Economics and Statistics, MIT Press, vol. 93(4), pages 1251-1261, November.
    3. Margaret Grosh & Paul Glewwe, 2000. "Designing Household Survey Questionnaires for Developing Countries," World Bank Publications - Books, The World Bank Group, number 25338.
    4. Backiny-Yetna,Prospere R. & Yacoubou Djima,Ismael & Steele,Diane E. & Backiny-Yetna,Prospere R. & Yacoubou Djima,Ismael & Steele,Diane E., 2014. "The impact of household food consumption data collection methods on poverty and inequality measures in Niger," Policy Research Working Paper Series 7090, The World Bank.
    5. Beegle, Kathleen & De Weerdt, Joachim & Friedman, Jed & Gibson, John, 2012. "Methods of household consumption measurement through surveys: Experimental results from Tanzania," Journal of Development Economics, Elsevier, vol. 98(1), pages 3-18.
    6. Menno Pradhan, 2001. "Welfare Analysis with a Proxy Consumption Measure – Evidence from a Repeated Experiment in Indonesia," Tinbergen Institute Discussion Papers 01-092/2, Tinbergen Institute.
    7. anonymous, 2000. "Consumer privacy protections finalized," Financial Update, Federal Reserve Bank of Atlanta, vol. 13(Jul), pages 1-6.
    8. Bhattacharya, Debopam, 2007. "Inference on inequality from household survey data," Journal of Econometrics, Elsevier, vol. 137(2), pages 674-707, April.
    9. Bhattacharya, Debopam, 2005. "Asymptotic inference from multi-stage samples," Journal of Econometrics, Elsevier, vol. 126(1), pages 145-171, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sharp,Michael K. & Buffière,Bertrand & Himelein,Kristen & Troubat,Nathalie & Gibson,John, 2022. "Effects of Data Collection Methods on Estimated Household Consumption and Survey Costs : Evidence from an Experiment in the Marshall Islands," Policy Research Working Paper Series 10029, The World Bank.
    2. Zezza, Alberto & Carletto, Calogero & Fiedler, John L. & Gennari, Pietro & Jolliffe, Dean, 2017. "Food counts. Measuring food consumption and expenditures in household consumption and expenditure surveys (HCES). Introduction to the special issue," Food Policy, Elsevier, vol. 72(C), pages 1-6.
    3. Prydz, Espen Beer & Jolliffe, Dean & Serajuddin, Umar, 2021. "Mind the Gap," GLO Discussion Paper Series 944, Global Labor Organization (GLO).
    4. Strupat, Christoph & Farfán, Gabriela & Moritz, Laura & Negre, Mario & Vakis, Renos, 2021. "Obesity and food away from home: What drives the socioeconomic gradient in excess body weight?," Economics & Human Biology, Elsevier, vol. 43(C).
    5. Johanna Choumert-Nkolo & Pascale Phelinas, 2018. "New paradigms for household surveys in low and middle income countries [Nouveaux paradigmes d'élaboration des enquêtes ménages dans les pays du Sud]," Working Papers halshs-01888609, HAL.
    6. Himelein,Kristen, 2022. "Determining the Caloric Content of Food Consumed away from Home : An Application to theConstruction of a Cost-of-Basic-Needs Poverty Line," Policy Research Working Paper Series 10018, The World Bank.
    7. Zezza, Alberto & Carletto, Gero & Fiedler, John L & Gennari, Pietro & Jolliffe, Dean M, 2017. "Food Counts. Measuring Food Consumption And Expenditures In Household Consumption And Expenditure Surveys (HCES)," 2017 International Congress, August 28-September 1, 2017, Parma, Italy 260886, European Association of Agricultural Economists.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dang, Hai-Anh H & Carletto, Calogero, 2022. "Recall Bias Revisited: Measure Farm Labor Using Mixed-Mode Surveys and Multiple Imputation," IZA Discussion Papers 14997, Institute of Labor Economics (IZA).
    2. Luisa Natali & Marta Moratti, 2012. "Measuring Household Welfare: Short versus long consumption modules," Papers inwopa671, Innocenti Working Papers.
    3. Conforti, Piero & Grünberger, Klaus & Troubat, Nathalie, 2017. "The impact of survey characteristics on the measurement of food consumption," Food Policy, Elsevier, vol. 72(C), pages 43-52.
    4. Hai-Anh H. Dang & Peter F. Lanjouw, 2018. "Poverty Dynamics in India between 2004 and 2012: Insights from Longitudinal Analysis Using Synthetic Panel Data," Economic Development and Cultural Change, University of Chicago Press, vol. 67(1), pages 131-170.
    5. Friedman, Jed & Beegle, Kathleen & De Weerdt, Joachim & Gibson, John, 2017. "Decomposing response error in food consumption measurement: Implications for survey design from a randomized survey experiment in Tanzania," Food Policy, Elsevier, vol. 72(C), pages 94-111.
    6. Battistin, Erich & De Nadai, Michele & Krishnan, Nandini, 2020. "The Insights and Illusions of Consumption Measurements," IZA Discussion Papers 13222, Institute of Labor Economics (IZA).
    7. Backiny-Yetna, Prospère & Steele, Diane & Yacoubou Djima, Ismael, 2017. "The impact of household food consumption data collection methods on poverty and inequality measures in Niger," Food Policy, Elsevier, vol. 72(C), pages 7-19.
    8. Beegle, Kathleen & De Weerdt, Joachim & Friedman, Jed & Gibson, John, 2012. "Methods of household consumption measurement through surveys: Experimental results from Tanzania," Journal of Development Economics, Elsevier, vol. 98(1), pages 3-18.
    9. Fiedler, John L. & Mwangi, Dena M., 2016. "Improving household consumption and expenditure surveys’ food consumption metrics: Developing a strategic approach to the unfinished agenda:," IFPRI discussion papers 1570, International Food Policy Research Institute (IFPRI).
    10. Hai-Anh H. Dang & Peter F. Lanjouw & Umar Serajuddin, 2017. "Updating poverty estimates in the absence of regular and comparable consumption data: methods and illustration with reference to a middle-income country," Oxford Economic Papers, Oxford University Press, vol. 69(4), pages 939-962.
    11. Leandro De Magalhães & Dongya Koh & Raül Santaeulàlia-Llopis, 2016. "Consumption and Expenditure in Sub-Saharan Africa," Bristol Economics Discussion Papers 16/677, School of Economics, University of Bristol, UK, revised 07 Oct 2016.
    12. Leandro DE MAGALHÃES & Dongya KOH & Räul SANTAEULILA-LLOPIS, 2019. "The Cost of Consumption Smoothing: Less Schooling and less Nutrition," JODE - Journal of Demographic Economics, Cambridge University Press, vol. 85(3), pages 181-208, September.
    13. David E. Sahn & Stephen D. Younger, 2009. "Measuring intra‐household health inequality: explorations using the body mass index," Health Economics, John Wiley & Sons, Ltd., vol. 18(S1), pages 13-36, April.
    14. Almås, Ingvild & Somville, Vincent, 2020. "The effect of gender-targeted transfers: Experimental Evidence from India," CEPR Discussion Papers 15218, C.E.P.R. Discussion Papers.
    15. Sarr, Ibrahima & Dang, Hai-Anh H & Gutierrez, Carlos Santiago Guzman & Beltramo, Theresa & Verme, Paolo, 2024. "Using Cross-Survey Imputation to Estimate Poverty for Venezuelan Refugees in Colombia," IZA Discussion Papers 17036, Institute of Labor Economics (IZA).
    16. Rami V. Tabri & Mathew J. Elias, 2024. "Testing for Restricted Stochastic Dominance under Survey Nonresponse with Panel Data: Theory and an Evaluation of Poverty in Australia," Papers 2406.15702, arXiv.org.
    17. Luc Christiaensen & Peter Lanjouw & Jill Luoto & David Stifel, 2012. "Small area estimation-based prediction methods to track poverty: validation and applications," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 10(2), pages 267-297, June.
    18. John Gibson & Omoniyi Alimi, 2020. "Measuring poverty with noisy and corrected estimates of annual consumption: Evidence from Nigeria," African Development Review, African Development Bank, vol. 32(1), pages 96-107, March.
    19. Joachim De Weerdt & Kathleen Beegle & Jed Friedman & John Gibson, 2016. "The Challenge of Measuring Hunger through Survey," Economic Development and Cultural Change, University of Chicago Press, vol. 64(4), pages 727-758.
    20. Pape,Utz Johann & Wollburg,Philip Randolph, 2019. "Estimation of Poverty in Somalia Using Innovative Methodologies," Policy Research Working Paper Series 8735, The World Bank.

    More about this item

    Keywords

    Poverty; Inequality; Food consumption; Welfare measurement; Data collection;
    All these keywords.

    JEL classification:

    • O1 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development
    • C81 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Methodology for Collecting, Estimating, and Organizing Microeconomic Data; Data Access
    • I31 - Health, Education, and Welfare - - Welfare, Well-Being, and Poverty - - - General Welfare, Well-Being
    • I32 - Health, Education, and Welfare - - Welfare, Well-Being, and Poverty - - - Measurement and Analysis of Poverty

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jfpoli:v:72:y:2017:i:c:p:146-156. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/foodpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.