IDEAS home Printed from https://ideas.repec.org/a/eee/jetheo/v153y2014icp138-151.html
   My bibliography  Save this article

A game with no Bayesian approximate equilibria

Author

Listed:
  • Hellman, Ziv

Abstract

Harsányi [4] showed that Bayesian games over finite games of payoff uncertainty with finite sets of belief types always admit Bayesian equilibria. That still left the question of whether Bayesian games over finite games of payoff uncertainty with infinitely many types are guaranteed to have equilibria. Simon [7] presented an example of a Bayesian game with no measurable Bayesian equilibria, even though the underlying game of payoff uncertainty is finite. We present a new and shorter proof of Simon's result using a simpler Bayesian game that moreover does not even have measurable approximate equilibria. That game in turn is used as the basis for constructing another Bayesian game which has no Bayesian equilibria at all, even in non-measurable strategies, in a construction complementary to one appearing in Friedenberg and Meier [1].

Suggested Citation

  • Hellman, Ziv, 2014. "A game with no Bayesian approximate equilibria," Journal of Economic Theory, Elsevier, vol. 153(C), pages 138-151.
  • Handle: RePEc:eee:jetheo:v:153:y:2014:i:c:p:138-151
    DOI: 10.1016/j.jet.2014.06.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0022053114000891
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jet.2014.06.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. , & ,, 2017. "Bayesian games with a continuum of states," Theoretical Economics, Econometric Society, vol. 12(3), September.
    2. Yehuda Levy, 2013. "Discounted Stochastic Games With No Stationary Nash Equilibrium: Two Examples," Econometrica, Econometric Society, vol. 81(5), pages 1973-2007, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yehuda John Levy, 2020. "On games without approximate equilibria," International Journal of Game Theory, Springer;Game Theory Society, vol. 49(4), pages 1125-1128, December.
    2. Bergemann, Dirk & Morris, Stephen & Takahashi, Satoru, 2017. "Interdependent preferences and strategic distinguishability," Journal of Economic Theory, Elsevier, vol. 168(C), pages 329-371.
    3. Einy, Ezra & Haimanko, Ori, 2020. "Equilibrium existence in games with a concave Bayesian potential," Games and Economic Behavior, Elsevier, vol. 123(C), pages 288-294.
    4. Dirk Bergemann & Stephen Morris & Rafael Veiel, 2024. "A Strategic Topology on Information Structures," Papers 2411.09149, arXiv.org.
    5. Levy, Yehuda John, 2024. "Bayesian equilibrium: From local to global," Journal of Mathematical Economics, Elsevier, vol. 113(C).
    6. Oriol Carbonell-Nicolau, 2021. "Perfect equilibria in games of incomplete information," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 71(4), pages 1591-1648, June.
    7. Ziv Hellman & Yehuda John Levy, 2020. "Equilibria Existence in Bayesian Games: Climbing the Countable Borel Equivalence Relation Hierarchy," Working Papers 2020-03, Bar-Ilan University, Department of Economics.
    8. Wei He & Xiang Sun & Yeneng Sun & Yishu Zeng, 2021. "Characterization of equilibrium existence and purification in general Bayesian games," Papers 2106.08563, arXiv.org.
    9. He, Wei & Sun, Yeneng, 2019. "Pure-strategy equilibria in Bayesian games," Journal of Economic Theory, Elsevier, vol. 180(C), pages 11-49.
    10. Ziv Hellman & Yehuda John Levy, 2022. "Equilibria Existence in Bayesian Games: Climbing the Countable Borel Equivalence Relation Hierarchy," Mathematics of Operations Research, INFORMS, vol. 47(1), pages 367-383, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Wei & Sun, Yeneng, 2013. "Stationary Markov Perfect Equilibria in Discounted Stochastic Games," MPRA Paper 51274, University Library of Munich, Germany.
    2. Maria Arvaniti & Chandra K. Krishnamurthy & Anne-Sophie Crépin, 2019. "Time-consistent resource management with regime shifts," CER-ETH Economics working paper series 19/329, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    3. Oriol Carbonell-Nicolau, 2021. "Equilibria in infinite games of incomplete information," International Journal of Game Theory, Springer;Game Theory Society, vol. 50(2), pages 311-360, June.
    4. McLennan, Andrew, 2014. "Fixed points of parameterized perturbations," Journal of Mathematical Economics, Elsevier, vol. 55(C), pages 186-189.
    5. Bajoori, Elnaz & Flesch, János & Vermeulen, Dries, 2016. "Behavioral perfect equilibrium in Bayesian games," Games and Economic Behavior, Elsevier, vol. 98(C), pages 78-109.
    6. Kimmo Berg, 2016. "Elementary Subpaths in Discounted Stochastic Games," Dynamic Games and Applications, Springer, vol. 6(3), pages 304-323, September.
    7. Einy, Ezra & Haimanko, Ori, 2020. "Equilibrium existence in games with a concave Bayesian potential," Games and Economic Behavior, Elsevier, vol. 123(C), pages 288-294.
    8. Hülya Eraslan & Kirill S. Evdokimov & Jan Zápal, 2022. "Dynamic Legislative Bargaining," Springer Books, in: Emin Karagözoğlu & Kyle B. Hyndman (ed.), Bargaining, chapter 0, pages 151-175, Springer.
    9. Yehuda Levy, 2015. "Existence of SPE in Discounted Stochastic Games; Revisited and Simplified," Economics Series Working Papers 739, University of Oxford, Department of Economics.
    10. Ziv Hellman & Yehuda John Levy, 2020. "Equilibria Existence in Bayesian Games: Climbing the Countable Borel Equivalence Relation Hierarchy," Working Papers 2020_15, Business School - Economics, University of Glasgow.
    11. Barelli, Paulo & Duggan, John, 2014. "A note on semi-Markov perfect equilibria in discounted stochastic games," Journal of Economic Theory, Elsevier, vol. 151(C), pages 596-604.
    12. Seungjin Han, 2021. "Robust Equilibria in General Competing Mechanism Games," Papers 2109.13177, arXiv.org, revised Aug 2023.
    13. Oriol Carbonell-Nicolau, 2021. "Perfect equilibria in games of incomplete information," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 71(4), pages 1591-1648, June.
    14. Wei He & Xiang Sun & Yeneng Sun & Yishu Zeng, 2021. "Characterization of equilibrium existence and purification in general Bayesian games," Papers 2106.08563, arXiv.org.
    15. Wei He & Yeneng Sun, 2013. "Stationary Markov Perfect Equilibria in Discounted Stochastic Games," Papers 1311.1562, arXiv.org, revised Jan 2017.
    16. Vivek S. Borkar, 2022. "Learning to cooperate in agent-based control of queueing networks," Queueing Systems: Theory and Applications, Springer, vol. 100(3), pages 513-515, April.
    17. Ori Haimanko, 2022. "Equilibrium existence in two-player contests without absolute continuity of information," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 10(1), pages 27-39, May.
    18. Xavier Venel, 2015. "Commutative Stochastic Games," Mathematics of Operations Research, INFORMS, vol. 40(2), pages 403-428, February.
    19. Subir K. Chakrabarti, 2021. "Stationary equilibrium in stochastic dynamic models: Semi-Markov strategies," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 9(2), pages 177-194, October.
    20. He, Wei & Sun, Yeneng, 2017. "Stationary Markov perfect equilibria in discounted stochastic games," Journal of Economic Theory, Elsevier, vol. 169(C), pages 35-61.

    More about this item

    Keywords

    Existence of equilibria; Bayesian games; Incomplete information; Approximate equilibria;
    All these keywords.

    JEL classification:

    • C62 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Existence and Stability Conditions of Equilibrium
    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jetheo:v:153:y:2014:i:c:p:138-151. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/622869 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.