IDEAS home Printed from https://ideas.repec.org/a/spr/jogath/v49y2020i4d10.1007_s00182-020-00734-0.html
   My bibliography  Save this article

On games without approximate equilibria

Author

Listed:
  • Yehuda John Levy

    (University of Glasgow)

Abstract

This note shows that the work by Simon and Tomkowicz (Israel J Math 227(1):215–231, 2018) answers another outstanding open question in game theory in addition to the non-existence of approximate Harsányi equilibrium in Bayesian games: it shows that strategic form games with bounded and separately continuous payoffs need not possess approximate equilibria.

Suggested Citation

  • Yehuda John Levy, 2020. "On games without approximate equilibria," International Journal of Game Theory, Springer;Game Theory Society, vol. 49(4), pages 1125-1128, December.
  • Handle: RePEc:spr:jogath:v:49:y:2020:i:4:d:10.1007_s00182-020-00734-0
    DOI: 10.1007/s00182-020-00734-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00182-020-00734-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00182-020-00734-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ziv Hellman & Yehuda John Levy, 2020. "Equilibria Existence in Bayesian Games: Climbing the Countable Borel Equivalence Relation Hierarchy," Working Papers 2020_15, Business School - Economics, University of Glasgow.
    2. Vieille, Nicolas, 1996. "On Equilibrium on the Square," International Journal of Game Theory, Springer;Game Theory Society, vol. 25(2), pages 199-205.
    3. Ziv Hellman, 2012. "A Game with No Bayesian Approximate Equilibria," Discussion Paper Series dp615, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
    4. Stinchcombe, Maxwell B., 2011. "Balance and discontinuities in infinite games with type-dependent strategies," Journal of Economic Theory, Elsevier, vol. 146(2), pages 656-671, March.
    5. Hellman, Ziv, 2014. "A game with no Bayesian approximate equilibria," Journal of Economic Theory, Elsevier, vol. 153(C), pages 138-151.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Wei & Sun, Yeneng, 2019. "Pure-strategy equilibria in Bayesian games," Journal of Economic Theory, Elsevier, vol. 180(C), pages 11-49.
    2. Bergemann, Dirk & Morris, Stephen & Takahashi, Satoru, 2017. "Interdependent preferences and strategic distinguishability," Journal of Economic Theory, Elsevier, vol. 168(C), pages 329-371.
    3. Einy, Ezra & Haimanko, Ori, 2020. "Equilibrium existence in games with a concave Bayesian potential," Games and Economic Behavior, Elsevier, vol. 123(C), pages 288-294.
    4. Ziv Hellman & Yehuda John Levy, 2020. "Equilibria Existence in Bayesian Games: Climbing the Countable Borel Equivalence Relation Hierarchy," Working Papers 2020_15, Business School - Economics, University of Glasgow.
    5. Oriol Carbonell-Nicolau, 2021. "Perfect equilibria in games of incomplete information," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 71(4), pages 1591-1648, June.
    6. Wei He & Xiang Sun & Yeneng Sun & Yishu Zeng, 2021. "Characterization of equilibrium existence and purification in general Bayesian games," Papers 2106.08563, arXiv.org.
    7. Oriol Carbonell-Nicolau, 2021. "Equilibria in infinite games of incomplete information," International Journal of Game Theory, Springer;Game Theory Society, vol. 50(2), pages 311-360, June.
    8. Yehuda Levy, 2013. "A Cantor Set of Games with No Shift-Homogeneous Equilibrium Selection," Mathematics of Operations Research, INFORMS, vol. 38(3), pages 492-503, August.
    9. , & ,, 2017. "Bayesian games with a continuum of states," Theoretical Economics, Econometric Society, vol. 12(3), September.
    10. Michael Greinecker & Christoph Kuzmics, 2022. "Limit Orders and Knightian Uncertainty," Papers 2208.10804, arXiv.org.
    11. Ori Haimanko, 2022. "Equilibrium existence in two-player contests without absolute continuity of information," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 10(1), pages 27-39, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jogath:v:49:y:2020:i:4:d:10.1007_s00182-020-00734-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.