IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1311.1562.html
   My bibliography  Save this paper

Stationary Markov Perfect Equilibria in Discounted Stochastic Games

Author

Listed:
  • Wei He
  • Yeneng Sun

Abstract

The existence of stationary Markov perfect equilibria in stochastic games is shown under a general condition called "(decomposable) coarser transition kernels". This result covers various earlier existence results on correlated equilibria, noisy stochastic games, stochastic games with finite actions and state-independent transitions, and stochastic games with mixtures of constant transition kernels as special cases. A remarkably simple proof is provided via establishing a new connection between stochastic games and conditional expectations of correspondences. New applications of stochastic games are presented as illustrative examples, including stochastic games with endogenous shocks and a stochastic dynamic oligopoly model.

Suggested Citation

  • Wei He & Yeneng Sun, 2013. "Stationary Markov Perfect Equilibria in Discounted Stochastic Games," Papers 1311.1562, arXiv.org, revised Jan 2017.
  • Handle: RePEc:arx:papers:1311.1562
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1311.1562
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. John Duggan, 2012. "Noisy Stochastic Games," Econometrica, Econometric Society, vol. 80(5), pages 2017-2045, September.
    2. Yehuda (John) Levy, 2012. "A Discounted Stochastic Game with No Stationary Nash Equilibrium," Discussion Paper Series dp596r, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem, revised May 2012.
    3. John Duggan, 2012. "Noisy Stochastic Games," RCER Working Papers 570, University of Rochester - Center for Economic Research (RCER).
    4. Yehuda Levy, 2013. "Discounted Stochastic Games With No Stationary Nash Equilibrium: Two Examples," Econometrica, Econometric Society, vol. 81(5), pages 1973-2007, September.
    5. A. S. Nowak & T. E. S. Raghavan, 1992. "Existence of Stationary Correlated Equilibria with Symmetric Information for Discounted Stochastic Games," Mathematics of Operations Research, INFORMS, vol. 17(3), pages 519-526, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fu, Jing & Page, Frank & Zigrand, Jean-Pierre, 2022. "Layered networks, equilibrium dynamics, and stable coalitions," LSE Research Online Documents on Economics 118874, London School of Economics and Political Science, LSE Library.
    2. Wei He, 2022. "Discontinuous stochastic games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 73(4), pages 827-858, June.
    3. Damián Pierri, 2023. "Simulations in Models with Heterogeneous Agents, Incomplete Markets and Aggregate Uncertainty," Working Papers 259, Red Nacional de Investigadores en Economía (RedNIE).
    4. Wei He & Yeneng Sun, 2018. "Conditional expectation of correspondences and economic applications," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 66(2), pages 265-299, August.
    5. Hülya Eraslan & Kirill S. Evdokimov & Jan Zápal, 2022. "Dynamic Legislative Bargaining," Springer Books, in: Emin Karagözoğlu & Kyle B. Hyndman (ed.), Bargaining, chapter 0, pages 151-175, Springer.
    6. David González-Sánchez & Fernando Luque-Vásquez & J. Adolfo Minjárez-Sosa, 2019. "Zero-Sum Markov Games with Random State-Actions-Dependent Discount Factors: Existence of Optimal Strategies," Dynamic Games and Applications, Springer, vol. 9(1), pages 103-121, March.
    7. Cao, Dan, 2020. "Recursive equilibrium in Krusell and Smith (1998)," Journal of Economic Theory, Elsevier, vol. 186(C).
    8. Subir K. Chakrabarti, 2021. "Stationary equilibrium in stochastic dynamic models: Semi-Markov strategies," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 9(2), pages 177-194, October.
    9. Fu, Jing & Page, Frank, 2022. "Discounted stochastic games, the 3M property and stationary Markov perfect equilibria," LSE Research Online Documents on Economics 118865, London School of Economics and Political Science, LSE Library.
    10. Light, Bar & Weintraub, Gabriel, 2018. "Mean Field Equilibrium: Uniqueness, Existence, and Comparative Statics," Research Papers 3731, Stanford University, Graduate School of Business.
    11. Jing Fu & Frank Page & Jean-Pierre Zigrand, 2023. "Correction to: Layered Networks, Equilibrium Dynamics, and Stable Coalitions," Dynamic Games and Applications, Springer, vol. 13(2), pages 669-704, June.
    12. Yiming Xu & Ali Alderete Peralta & Nazmiye Balta-Ozkan, 2024. "Vehicle-to-Vehicle Energy Trading Framework: A Systematic Literature Review," Sustainability, MDPI, vol. 16(12), pages 1-28, June.
    13. Jenkins, Mark & Liu, Paul & Matzkin, Rosa L. & McFadden, Daniel L., 2021. "The browser war — Analysis of Markov Perfect Equilibrium in markets with dynamic demand effects," Journal of Econometrics, Elsevier, vol. 222(1), pages 244-260.
    14. Dang, Chuangyin & Herings, P. Jean-Jacques & Li, Peixuan, 2020. "An Interior-Point Path-Following Method to Compute Stationary Equilibria in Stochastic Games," Research Memorandum 001, Maastricht University, Graduate School of Business and Economics (GSBE).
    15. He, Wei & Sun, Yeneng, 2020. "Dynamic games with (almost) perfect information," Theoretical Economics, Econometric Society, vol. 15(2), May.
    16. Anna Jaśkiewicz & Andrzej S. Nowak, 2021. "Markov decision processes with quasi-hyperbolic discounting," Finance and Stochastics, Springer, vol. 25(2), pages 189-229, April.
    17. Jie Ning, 2021. "Reducible Markov Decision Processes and Stochastic Games," Production and Operations Management, Production and Operations Management Society, vol. 30(8), pages 2726-2751, August.
    18. Chuangyin Dang & P. Jean-Jacques Herings & Peixuan Li, 2022. "An Interior-Point Differentiable Path-Following Method to Compute Stationary Equilibria in Stochastic Games," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1403-1418, May.
    19. Jing Fu & Frank Page & Jean-Pierre Zigrand, 2023. "Layered Networks, Equilibrium Dynamics, and Stable Coalitions," Dynamic Games and Applications, Springer, vol. 13(2), pages 636-668, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Wei & Sun, Yeneng, 2013. "Stationary Markov Perfect Equilibria in Discounted Stochastic Games," MPRA Paper 51274, University Library of Munich, Germany.
    2. Page, Frank, 2016. "On K-Class discounted stochastic games," LSE Research Online Documents on Economics 67809, London School of Economics and Political Science, LSE Library.
    3. Page, Frank, 2015. "Stationary Markov equilibria for K-class discounted stochastic games," LSE Research Online Documents on Economics 65103, London School of Economics and Political Science, LSE Library.
    4. Page, Frank, 2016. "Stationary Markov equilibria for approximable discounted stochastic games," LSE Research Online Documents on Economics 67808, London School of Economics and Political Science, LSE Library.
    5. Barelli, Paulo & Duggan, John, 2014. "A note on semi-Markov perfect equilibria in discounted stochastic games," Journal of Economic Theory, Elsevier, vol. 151(C), pages 596-604.
    6. He, Wei & Sun, Yeneng, 2017. "Stationary Markov perfect equilibria in discounted stochastic games," Journal of Economic Theory, Elsevier, vol. 169(C), pages 35-61.
    7. Jing Fu & Frank Page & Jean-Pierre Zigrand, 2023. "Correction to: Layered Networks, Equilibrium Dynamics, and Stable Coalitions," Dynamic Games and Applications, Springer, vol. 13(2), pages 669-704, June.
    8. Qingda Wei & Xian Chen, 2022. "Discounted stochastic games for continuous-time jump processes with an uncountable state space," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 95(2), pages 187-218, April.
    9. Anna Jaśkiewicz & Andrzej S. Nowak, 2016. "Stationary Almost Markov Perfect Equilibria in Discounted Stochastic Games," Mathematics of Operations Research, INFORMS, vol. 41(2), pages 430-441, May.
    10. Jaśkiewicz, Anna & Nowak, Andrzej S., 2014. "Stationary Markov perfect equilibria in risk sensitive stochastic overlapping generations models," Journal of Economic Theory, Elsevier, vol. 151(C), pages 411-447.
    11. Wei He, 2022. "Discontinuous stochastic games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 73(4), pages 827-858, June.
    12. Barelli, Paulo & Duggan, John, 2015. "Extremal choice equilibrium with applications to large games, stochastic games, & endogenous institutions," Journal of Economic Theory, Elsevier, vol. 155(C), pages 95-130.
    13. Jean Guillaume Forand & John Duggan, 2013. "Markovian Elections," Working Papers 1305, University of Waterloo, Department of Economics, revised Oct 2013.
    14. Duggan, John, 2017. "Existence of stationary bargaining equilibria," Games and Economic Behavior, Elsevier, vol. 102(C), pages 111-126.
    15. Sofia Moroni, 2020. "Existence of Trembling hand perfect and sequential equilibrium in Stochastic Games," Working Paper 6837, Department of Economics, University of Pittsburgh.
    16. Łukasz Balbus & Kevin Reffett & Łukasz Woźny, 2013. "Markov Stationary Equilibria in Stochastic Supermodular Games with Imperfect Private and Public Information," Dynamic Games and Applications, Springer, vol. 3(2), pages 187-206, June.
    17. Wei He & Yeneng Sun, 2018. "Conditional expectation of correspondences and economic applications," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 66(2), pages 265-299, August.
    18. Subir K. Chakrabarti, 2021. "Stationary equilibrium in stochastic dynamic models: Semi-Markov strategies," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 9(2), pages 177-194, October.
    19. Balbus, Łukasz & Reffett, Kevin & Woźny, Łukasz, 2014. "A constructive study of Markov equilibria in stochastic games with strategic complementarities," Journal of Economic Theory, Elsevier, vol. 150(C), pages 815-840.
    20. Sofia Moroni, 2019. "Existence of trembling hand perfect and sequential equilibrium in games with stochastic timing of moves," Working Paper 6757, Department of Economics, University of Pittsburgh.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1311.1562. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.